Health prognosisforequipmentisconsideredasakeyprocessofthecondition-based
maintenance strategy.Thispaperpresentsanintegratedframeworkformulti-sensor
equipmentdiagnosisandprognosisbasedonadaptivehiddensemi-Markovmodel
(AHSMM).Unlikehiddensemi-Markovmodel(HSMM),thebasicalgorithmsinan
AHSMM arefirstmodifiedinorderfordecreasingcomputationandspacecomplexity.
Then, themaximumlikelihoodlinearregressiontransformationsmethodisusedtotrain
the outputanddurationdistributionstore-estimateallunknownparameters.The
AHSMM isusedtoidentifythehiddendegradationstateandobtainthetransition
probabilities amonghealthstatesanddurations.Finally,throughtheproposedhazard
rateequations,onecanpredicttheusefulremaininglifeofequipmentwithmulti-sensor
information.Ourmainresultsareverifiedinrealworldapplications:monitoringhydraulic
pumpsfromCaterpillarInc.Theresultsshowthattheproposedmethodsaremore
effectiveformulti-sensormonitoringequipmenthealthprognosis.