Adipic acid can be also obtained by oxidation of cyclohexene by
hydrogen peroxide in presence of a catalyst (Scheme 1).Hydrogen peroxide (H2O2) is widely accepted as a green oxidant because it is relatively non-toxic and its decomposition leads to benign by-products like water and oxygen.5,6 H2O2 has several advantages as an oxidant for industrial processes: easy handling and storage, high active oxygen content and low cost.7 However, H2O2 alone is rarely sufficient to achieve the conversion and catalysts are essential.8
Oxidation of cyclohexene by H2O2 typically involves epoxidation
of the double bond, its opening and transformation to a diol and
then a BaeyereVilliger oxidation and multiple hydrolysis steps
resulting in adipic acid (Scheme 2).9 The key step for this reaction in
an aqueous medium is to bring all the reagents into close contact.
Deng and co-workers5 described the synthesis of adipic acid in
a water emulsion by hydrogen peroxide oxidation of cyclohexene
without surfactant and under strong stirring. In this system, addition
of an organic acid as ligand (co-catalyst) and severe reaction
conditions (20 h at 94 C following to 0 C overnight) were required
to obtain a good yield of pure adipic acid. Noyori and co-workers10
described the use of a phase transfer agent (methyltrioctylammonium
hydrogenosulphate) in water to produce adipic acid
with a good yield, but reuse of the system required an additional amount of phase transfer agent to be effective. More recently, the
potential of transition metal-mesoporous materials as heterogeneous
systems have been described11 in water or organic solvent
but the long reaction time and/or the low adipic acid production
yield are not advantageous for an industrial process. Also, the use of
surfactant-type peroxotungstates or peroxomolybdates has been
studied but the reuse of these catalysts for a new reactional cycle
(in the perspective of an industrial process) is never described.
12The main difficulty inwater or hydrogen peroxide is the weak
contact between the hydrophobic and hydrophilic reagents. The
use of microemulsions as aqueous media for organic reactions is
a way to improve the compatibility between the different reagents13
and to overcome the use of polluting organic solvent. In
this paper, we present, for the first time, the use of hydrogen peroxide
microemulsions as reaction media for the oxidation of
cyclohexene to adipic acid with hydrogen peroxide. The establishment
of the microemulsions zone, the reactivity in these media and
the reuse of the system (to provide a first approach for an industrial
process) will be presented and discussed.
Microemulsions are transparent and thermodynamically stable
dispersions of oil and water or non aqueous structured polar solvent
(formamide, glycerol and their mixture with water)14 spontaneously
formed by the addition of an amphiphile: a surfactant
and a co-surfactant (an amphiphile with a short chain like an alcohol,
an acid or an amine).15 There are two types of microemulsions
according to the nature of the continuous phase (Fig. 1).
Their thermodynamic stability and their nanostructure are
two important characteristics that distinguish them from emulsions.
Direct microemulsions are usually expressed as oil-inwater
microemulsions in which nanoscopic oil droplets
(10e50 nm in diameter) are dispersed in water with the help of
a surfactant and a co-surfactant. These microemulsions are very
suitable as reaction media for a sustainable development because
of their numerous properties;16 they allow organic synthesis in
water, specific localization of the reactants, interfacial orientation
of the molecules and increase of local concentrations and reaction
rate. Many chemical reactions have been studied in
microemulsion media: oligomerization of norbornene,17 photoamidation
of olefin,18 catalytic hydrolysis of phosphate esters,19
olefin oxidation,20 halogen nucleophilic substitution,21 mustard
gas oxidation,22 DielseAlder reaction23 etc. Holmberg13 has
demonstrated that microemulsions can be considered as an alternative
to biphasic systems with added phase transfer reagent.
Generally, microemulsions are described as versatile reaction media for many organic reactions but there is still no industrial
process based on microemulsions, essentially because of the
difficulty to recover the products and to reuse the system.
กรด adipic นอกจากนี้ยังสามารถได้รับโดยการออกซิเดชันของไซโคลเฮกซีนโดย
ไฮโดรเจนเปอร์ออกไซด์ในสถานะของตัวเร่งปฏิกิริยา ( โครงการ 1 ) ไฮโดรเจนเปอร์ออกไซด์ ( H2O2 ) เป็นที่ยอมรับอย่างกว้างขวางเป็นสารสีเขียว เพราะมันค่อนข้างไม่เป็นพิษและสลายไปสู่ผลิตภัณฑ์อ่อนโยนเหมือนน้ำและออกซิเจน อมู H2O2 มีข้อดีหลายประการเป็นตัวรับอิเล็กตรอนในกระบวนการอุตสาหกรรม : ง่ายต่อการจัดการและการจัดเก็บปริมาณออกซิเจนที่ใช้งานสูงและต้นทุนต่ำ 7 อย่างไรก็ตาม H2O2 คนเดียวไม่ค่อยเพียงพอที่จะบรรลุการแปลงและตัวเร่งปฏิกิริยาเป็นสําคัญ ปฏิกิริยาออกซิเดชันของไซโคลเฮกซีน 8
โดย H2O2 มักจะเกี่ยวข้องกับอีพอกซิเดชันของพันธบัตรคู่เปิดและแปลงร่างเป็นไดออลและ
แล้ว baeyerevilliger ออกซิเดชันและขั้นตอนย่อยหลาย
ส่งผลให้เกิดกรด adipic ( โครงการ 2 )9 ที่สำคัญสำหรับปฏิกิริยาในสารละลาย
กลางเพื่อนำสารเคมีทั้งหมดที่ติดต่อใกล้ชิด
เติ้งและ co-workers5 อธิบายการสังเคราะห์กรด adipic ใน
น้ำอิมัลชัน โดยใช้ไฮโดรเจนเปอร์ออกไซด์ออกซิเดชันของไซโคลเฮกซีน
โดยสารลดแรงตึงผิวและภายใต้แรงปลุกเร้า ในระบบนี้ นอกจากนี้
ของกรดอินทรีย์เป็นลิแกนด์ ( ตัวเร่งปฏิกิริยา Co ) และ
ปฏิกิริยารุนแรงเงื่อนไข ( 20 H ที่ 94 C ตาม 0 C ค้างคืน ) เป็น
รับผลผลิตกรด adipic ที่บริสุทธิ์ noyori co-workers10
และอธิบายการใช้เฟสตัวแทนโอน ( methyltrioctylammonium
hydrogenosulphate ) ในน้ำเพื่อผลิตกรด adipic
กับผลตอบแทนที่ดี แต่การใช้ระบบเป็นจำนวนเพิ่มเติมของตัวแทนโอนเฟสให้มีประสิทธิภาพ
เมื่อเร็วๆ นี้ศักยภาพของการเปลี่ยนวัสดุเป็นโลหะเมโซระบบวิวิธพันธ์
ได้รับ described11 ในน้ำหรือตัวทำละลายอินทรีย์ แต่ยาว
เวลาปฏิกิริยาและ / หรือต่ำกรด adipic การผลิต
ผลตอบแทนไม่เป็นประโยชน์สำหรับกระบวนการอุตสาหกรรม นอกจากนี้ การใช้
peroxotungstates ประเภทสารลดแรงตึงผิว หรือ peroxomolybdates ได้รับ
เรียนแต่ใช้ตัวเร่งปฏิกิริยาเหล่านี้สำหรับ
reactional รอบใหม่( ในมุมมองของกระบวนการอุตสาหกรรม ) ไม่เคยอธิบาย
12the ปัญหาสำคัญในหรือไฮโดรเจนเปอร์ออกไซด์ คือติดต่ออ่อนแอ
ระหว่างสารเคมีและ hydrophobic น้ำ .
ใช้ไมโครอิมัลชันเป็นสื่อที่มีปฏิกิริยาอินทรีย์
วิธีการปรับปรุงความเข้ากันได้ระหว่างที่แตกต่างกัน reagents13
และเอาชนะใช้มลพิษตัวทำละลายอินทรีย์ ใน
กระดาษนี้เราปัจจุบันเป็นครั้งแรก การใช้ไฮโดรเจนเปอร์ออกไซด์
ไมโครอิมัลชันเป็นปฏิกิริยาสื่อสำหรับปฏิกิริยาออกซิเดชันของ
การเพื่อกรด adipic ด้วยไฮโดรเจนเปอร์ออกไซด์ สถานประกอบการ
ของไมโครอิมัลชันโซน ปฏิกิริยาในสื่อเหล่านี้ และ
ใช้ระบบ ( เพื่อให้วิธีการแรกสำหรับอุตสาหกรรม
กระบวนการ ) จะนำเสนอและอภิปราย .
ไมโครอิมัลชันมีความโปร่งใสและ thermodynamically มั่นคง
การกระจายของน้ำและน้ำมัน หรือสารละลายที่มีตัวทำละลายไม่มีขั้ว
( Formamide , กลีเซอรอลและผสมกับน้ำ ) 14 เอง
ขึ้นโดยนอกเหนือจากการ amphiphile : สารลดแรงตึงผิวและสารลดแรงตึงผิวร่วม
( amphiphile ด้วยโซ่สั้น ๆเช่นแอลกอฮอล์ ,
หรือ amine กรด ) 15 คน มีอยู่สองชนิดของไมโครอิมัลชัน
ตามลักษณะของวัฏภาคต่อเนื่อง ( รูปที่ 1 ) .
เสถียรภาพอุณหพลศาสตร์และโครงสร้างนาโนของพวกเขา
ที่สำคัญ 2 ลักษณะที่แยกพวกเขาจากอิมัลชัน .
ไมโครอิมัลชันโดยตรงมักจะแสดงเป็นน้ำมันในไมโครอิมัลชันที่หยดน้ํามัน nanoscopic
( 10e50 nm ในเส้นผ่าศูนย์กลาง ) จะกระจายตัวในน้ำด้วยความช่วยเหลือของ : สารลดแรงตึงผิวและสารลดแรงตึงผิวร่วม .อนุภาคเหล่านี้มีมาก
เหมาะเป็นปฏิกิริยาสื่อเพื่อการพัฒนาที่ยั่งยืน เพราะคุณสมบัติมากมาย
; พวกเขาให้อินทรีย์สังเคราะห์ใน
น้ำจำกัดเฉพาะของตั้งต้น
ปฐมนิเทศระหว่าง , ของโมเลกุล และเพิ่มความเข้มข้นของท้องถิ่น และอัตราการเกิดปฏิกิริยา
ปฏิกิริยาทางเคมีจำนวนมากได้รับการศึกษาใน
ไมโครอิมัลชันสื่อ :โกเมอไรเซชันของ Norbornene 17 photoamidation
ของโอเลฟิน , 18 ปฏิกิริยาเอสเทอร์ไฮโดรฟอสเฟต , 19
โอเลฟินออกซิเดชัน , 20 หลอด nucleophilic ทดแทน , 21 ออกซิเดชันแก๊สมัสตาร์ด
22 dielsealder reaction23 ฯลฯ holmberg13 ได้
แสดงว่าปีถือได้ว่าเป็นทางเลือก
ระบบด้วยการเพิ่มระยะการใช้ biphasic .
โดยทั่วไป
การแปล กรุณารอสักครู่..
