KENNY: Let me offer an example of that. It’s the work I did in weather—which is a chaotic system as well. So, you may have noticed that weather forecasts have gotten more accurate the last few years, and that’s been because of machine learning. So, what’s been important is training the system after each prediction that didn’t come true. For instance, you said it was going to rain on a particular day and it didn’t; it actually rained four miles north or four miles south. So you put that new fact in, and then the system automatically reweights all the algorithms—because there are algorithms for every level of the atmosphere—to pinpoint what it got wrong, and then that improves it for the next time. Now, the exercise isn’t simple: Weather is the atmosphere. It’s 100 kilometers thick, it covers the whole earth, it’s fed by the oceans, and it’s always in motion.
But what’s important is that you’re constantly learning on the negative so that the algorithms reweight without losing what was the positive, and that’s how it gets higher and higher confidence in its predictions.
FORTUNE: And then there are the reams and reams of new data to feed into your models.
KENNY: So, as we’ve added so many more sensors on smartphones and watches and windshield wipers and airplanes, we’ve just increased the amount of data that we have, and we’re capturing it more often. We went from a model that was run every six hours to a model that’s run a minimum of every 15 minutes; we went from having data at 2 million locations to having data at up to 3.2 billion locations.
That’s just a massive explosion in computation. As a result, you begin to see some of the chaos—or the butterfly effect—more quickly. And so you can begin to put narrower ranges of possibilities around what’s going to happen. The best examples are tropical storms. We just had Hurricane Matthew. There was a great deal of confidence in its path. There was a serious risk that the eye would have come inward—fifty miles further and it would have been far more catastrophic. But there was a high confidence interval of what was going to happen weeks out. When the storm was in Africa, it could be watched, and you could see it coming. I would say the data proves that the 5-day forecast today is as accurate as the 24-hour forecast was a decade ago. So there has been a big leap, and there is another big leap happening now in that particular field.
Take all of these lessons and apply them to the human body, apply them to a cancer system. As we get more data, as we get more sensors, as people are better able to understand what’s going on in their own bodies every day—as those get computed, I do believe we’ll have a higher ability to predict. In the short-run, what’s happening in cancer and in other diseases is that we’re better able to match your particular chaos—your particular set of systems—to someone who looked like you in the past. And that can help you get to a diagnosis and a course of treatment faster.
I think the goal here is that, eventually, these systems will predict disease progression in time to actually take preventive action, which I think is better for everybody. But at least at minimum, I hope, in the near-term, we’re able to better diagnose and then give people better treatment.