Theorem 2.1 ([1]). Let (X; gX) be a generalized topological space. Then
(1) cg(A) = X ¡ ig(X ¡ A);
(2) ig(A) = X ¡ cg(X ¡ A).
Definition 2.2. Let (X; gX) be a generalized topological space and
A j X. Then A is said to be
(1) g-semiopen [2] if A j cg¡ig(A)¢,
(2) g-preopen [2] if A j ig¡cg(A)¢,
(3) gr-open [3] if A = ig¡cg(A)¢,
(4) g-¯-open [2] if A j cg(ig¡cg(A)¢).
The complement of a g-semiopen (resp., g-preopen, gr-open, g-¯-open)
set is called g-semiclosed (resp., g-preclosed, gr-closed, g-¯-closed).
Theorem 2.1 ([1]). Let (X; gX) be a generalized topological space. Then(1) cg(A) = X ¡ ig(X ¡ A);(2) ig(A) = X ¡ cg(X ¡ A).Definition 2.2. Let (X; gX) be a generalized topological space andA j X. Then A is said to be(1) g-semiopen [2] if A j cg¡ig(A)¢,(2) g-preopen [2] if A j ig¡cg(A)¢,(3) gr-open [3] if A = ig¡cg(A)¢,(4) g-¯-open [2] if A j cg(ig¡cg(A)¢).The complement of a g-semiopen (resp., g-preopen, gr-open, g-¯-open)set is called g-semiclosed (resp., g-preclosed, gr-closed, g-¯-closed).
การแปล กรุณารอสักครู่..