บทที่ 2
เอกสารที่เกี่ยวข้อง
ในการศึกษาโครงงานคณิตศาสตร์ เรื่อง “รากอนันต์ถอดได้ ง่ายนิดเดียว” ผู้จัดทำได้ศึกษาและรวบรวมแนวคิดต่างๆ จากเอกสารที่เกี่ยวข้องกับเนื้อหาของโครงงาน ดังต่อไปนี้
1. สาระการเรียนรู้คณิตศาสตร์ที่เกี่ยวข้อง
1.1 หลักอุปนัยเชิงคณิตศาสตร์ 1.2 การพิสูจน์แบบอุปนัยเชิงคณิตศาสตร์
1.3 สมบัติของเลขยกกำลัง 1.4 รากที่ n
1.5 รากอนันต์ 1.6 สมการพหุนาม
1.7 ลำดับและอนุกรม
2. ทักษะและกระบวนการทางคณิตศาสตร์
1. สาระการเรียนรู้คณิตศาสตร์ที่เกี่ยวข้อง
1.1 หลักอุปนัยเชิงคณิตศาสตร์
ในการศึกษาคณิตศาสตร์นั้น บางครั้ง จะพบแบบรูปที่เกี่ยวข้องกับจำนวนเต็ม เช่น จากการสังเกตผลบวกของจำนวนคี่
1 = 1 = 12
1 + 3 = 4 = 22
1 + 3 + 5 = 9 = 32
แล้วทำนายแบบรูปทั่วไปว่า 1 + 3 + 5 + … + (2n – 1) = n2 ซึ่งเราจะเรียกข้อความนี้ว่าข้อความคาดการณ์ (Conjecture) เราไม่สามารถทราบได้ว่า รูปแบบที่เราได้กำหนดมาเป็นจริงหรือเท็จ หากเราตรวจสอบโดย การแทนจำนวนเต็มเข้าไปทั้งหมดจะไม่สามารถทำได้ เพราะอาจมีกรณีใดกรณีหนึ่งที่ทำให้ข้อความคาดการณ์นี้เป็นเท็จซึ่งเราจะต้องเสียเวลาในการแทนค่า กว่าที่จะหากรณีที่จะให้เป็นเท็จได้ ซึ่งเราจะใช้หลักอุปนัยเชิงคณิตศาสตร์
หลักอุปนัยเชิงคณิตศาสตร์ เป็นสัจพจน์ของเอปาโน (Peano Postulates) ข้อที่ 5 ซึ่งกล่าวว่า
ถ้า S เป็นเซตย่อยใด ๆ ของเซตของจำนวนนับ ซึ่งมีสมบัติดังนี้
1. 1 S 2.
1.2 การพิสูจน์โดยอุปนัยเชิงคณิตศาสตร์
นิยาม กำหนดให้ N เป็นจำนวนเต็มบวก สำหรับ n∈ N และ P(n) เป็นข้อความในพจน์ของ n
P (1) เป็นจริง
ถ้า P (k) เป็นจริงแล้ว P (k+1) เป็นจริง แล้ว P(n) เป็นจริงทุกค่า n ∈ N
ในการพิสูจน์ข้อความ : สำหรับจำนวนนับ n ใดๆ P(n) เป็นจริง ซึ่งเขียนอยู่ในรูปสัญลักษณ์
เมื่อ P(n) คือ ข้อความที่เกี่ยวกับ n และ N แทนเซตของจำนวนนับ นั่นคือ N = { 1 , 2 , 3 , … }
สรุปได้ว่าการพิสูจน์ข้อความในแบบ โดยใช้หลักอุปนัยเชิงคณิตศาสตร์เราจะต้องแสดง 2 ขั้นตอน คือ
1. แสดงว่า P (1) เป็นจริง (ขั้นตอนนี้เรียกว่า ขั้นฐานหลัก (basic step)
2. แสดงว่า เป็นจริง (ขั้นตอนนี้เรียกว่าขั้นตอนอุปนัย) (induction step)
ตัวอย่างที่ 1 จงใช้อุปนัยเชิงคณิตศาสตร์พิสูจน์ว่า 1 + 2 + 3 + … + n = สำหรับจำนวนเต็มบวก n ใดๆ
วิธีทำ ให้ P (n) แทนข้อความ 1 + 2 + 3 + … + n = …… (1)
จะแสดงว่า P (1) เป็นจริง 1 =
1 = 1
เพราะฉะนั้น P (1) เป็นจริง
จะพิสูจน์ว่าถ้า P (k) เป็นจริงแล้ว P (k+1) จะเป็นจริงด้วย
ให้ P (k) เป็นจริง 1+2+3+ …+ k = ...…. (2)
จะแสดงว่า P (k+1) เป็นจริงนั่น คือ
1+2+3+ …+ k + (k+1) =
จาก (2) บวกด้วย (k+1) ทั้งสองข้างจะได้ว่า
1+2+3+ …+ k + (k+1) = + (k+1)
=
=
ดังนั้น ถ้า P(k) เป็นจริงแล้ว P(k+1) เป็นจริงด้วยจาก (1) และ (2) โดยวิธีอุปนัยเชิงคณิตศาสตร์
สรุปได้ว่า P(n) เป็นจริงสำหรับทุกจำนวนเต็มบวก
หมายเหตุ (1) เรียกว่า ขั้นตอนฐานหลักและ (2) เรียกว่า ขั้นตอนอุปนัย
สรุปจากขั้นที่ 1 เราทราบว่า ข้อความคาดการณ์นี้เป็นจริง สำหรับค่า n = 1 และ จากขั้นที่ 2 เราทราบว่าต่อไปอีกว่า ถ้าข้อความคาดการณ์นี้จะเป็นจริง สำหรับค่า n = 1 + 1 = 2 ด้วย ทำนองเดียวกัน ก็จะเป็นจริงสำหรับ n = 2 + 1 = 3
และไปเรื่อยๆ นั่นคือ ถ้าขั้นตอน P(k + 1) เป็นเท็จ จะทำให้ข้อความอื่นๆ เท็จตามไปด้วย
1.3 สมบัติของเลขยกกำลัง
เลขยกกำลัง คือ การดำเนินการทางคณิตศาสตร์อย่างหนึ่งเขียนอยู่ในรูป ซึ่งประกอบด้วยสองจำนวน คือ ฐาน a และเลขชี้กำลัง (หรือกำลัง) n การยกกำลังมีความหมายเหมือนการคูณซ้ำๆ กัน คือ a คูณกันเป็นจำนวน n ตัว เมื่อ n เป็นจำนวนเต็มบวก เช่น
n ตัว
โดยปกติเลขชี้กำลังจะแสดงเป็นตัวยกอยู่ด้านขวาของฐานจำนวน an อ่านว่า a ยกกำลัง n
ถ้า a เป็นจำนวนใด ๆ m และ n เป็นจำนวนเต็มบวกแล้ว
1. (am)(an) = am + n 2. (am)n = amn
3. = am – n
4. a0 = 1
5. a-m =
6. (ab)n = anbn
1.4 รากที่ n
บทนิยาม ถ้า a และ x เป็นจำนวนจริง และ n เป็นจำนวนเต็มบวก ที่มีค่ามากกว่า 1 และ x จะเป็น
รากที่ n ของ a ก็ต่อเมื่อ xn = a
จำนวนจริงที่เป็นรากที่ n ของ a อาจจะมีได้หลายค่า แต่จะมีจำนวนจริงจำนวนหนึ่ง ซึ่งเราเรียกว่า จำนวนจริงหลักของรากที่ n ของ a และเขียนด้วยสัญลักษณ์
ถ้า a เป็นจำนวนจริง และ n เป็นจำนวนเต็มบวกที่มีค่ามากกว่า 1 แล้ว จะมีความหมาย ดังนี้
ตารางที่ 1 ตารางแสดงการหาค่ารากที่ n เมื่อ n เป็นจำนวนเต็มบวกใดๆ
n a > 0 a < 0 a = 0
จำนวนคู่ คือ รากที่ n
ที่เป็นบวกของ a ไม่เป็นจำนวนจริง
= 0
จำนวนคี่ คือ รากที่ n
ที่เป็นบวกของ a คือ รากที่ n
ที่เป็นลบของ a = 0
คือ รากที่ n ที่เป็นบวกของ a อ่านว่า กรณฑ์ที่ n ของ a หรือ ค่าหลักของ รากที่ n ของ a และเครื่องหมาย เรียกว่า เครื่องหมายกรณฑ์ เรียก n ว่า ลำดับหรือดัชนีของ กรณฑ์
ถ้า n เท่ากับสอง แล้วเขียน แทน
1.5 รากอนันต์
รากอนันต์มีลักษณะเป็นการติดค่ารากซ้อนกันไปแบบไม่รู้จบ รูปแบบของโจทย์ที่เป็นรากอนันต์ มี ดังนี้
รูปแบบที่ 1 การหารากอนันต์ของ
รูปแบบที่ 2 การหารากอนันต์ของ
รูปแบบที่ 3 การหารากอนันต์ของ
รูปแบบที่ 4 การหารากอนันต์ของ
รูปแบบที่ 5 การหารากอนันต์ของ
รูปแบบที่ 6 การหารากอนันต์ของ
รูปแบบที่ 7 การหารากอนันต์ในรูปแบบของสมการ
รูปแบบที่ 8 การหารากอนันต์ในรูปแบบของสมการ
1.6 สมการพหุนาม (Polynomial Equations)
พหุนาม คือ นิพจน์ที่สามารถเขียนในรูปเอกนามหรือผลบวกของเอกนามตั้งแต่ 2 เอกนามขึ้นไป สำหรับสมการพหุนามกำลังสองที่แยกตัวประกอบไม่ได้ สามารถใช้สูตรได้ดังนี้
สมมติว่าโจทย์ คือ ax2 + bx + c = 0 คำตอบของสมการคือ
ตัวอย่าง จงแก้สมการพหุนาม x2 + 10x + 6 = 0
วิธีทำ จากสูตร
พบว่า a = 1 , b = 1 , c = 6
x
ดังนั้น คำตอบของสมการ คือ และ
1.7 ลำดับและอนุกรม
ลำดับ (Sequence) นิยามของลำดับ คือ ฟังก์ชันที่มีโดเมนเป็นเซตของจำนวนเต็มบวก n ตัวแรก ซึ่งเรียกว่า ลำดับจำกัด ลำดับที่มีโดเมนเป็นเซตของจำนวนเต็มบวก เรียกว่า ลำดับอนันต์
ลำดับเลขคณิต (Arithmetic Sequence) ถ้า a1 , a2 , a3 , …, an , an + 1 เป็นจำนวนจริงที่เรียงกันเป็นลำดับเลขคณิตแล้ว จะมีสมบัติว่า a2 – a1 = a3 – a2 = a4 – a3 = … = an+1 – an = d เมื่อ d เป็นค่าคงตัว เรียก d ว่า “ผลต่างร่วม” พจน์ทั่วไปของลำดับเลขคณิต an = a1 + (n
บทที่ 2เอกสารที่เกี่ยวข้อง ในการศึกษาโครงงานคณิตศาสตร์ เรื่อง “รากอนันต์ถอดได้ ง่ายนิดเดียว” ผู้จัดทำได้ศึกษาและรวบรวมแนวคิดต่างๆ จากเอกสารที่เกี่ยวข้องกับเนื้อหาของโครงงาน ดังต่อไปนี้ 1. สาระการเรียนรู้คณิตศาสตร์ที่เกี่ยวข้อง1.1 หลักอุปนัยเชิงคณิตศาสตร์ 1.2 การพิสูจน์แบบอุปนัยเชิงคณิตศาสตร์1.3 สมบัติของเลขยกกำลัง 1.4 รากที่ n1.5 รากอนันต์ 1.6 สมการพหุนาม1.7 ลำดับและอนุกรม 2. ทักษะและกระบวนการทางคณิตศาสตร์1. สาระการเรียนรู้คณิตศาสตร์ที่เกี่ยวข้อง1.1 หลักอุปนัยเชิงคณิตศาสตร์ ในการศึกษาคณิตศาสตร์นั้น บางครั้ง จะพบแบบรูปที่เกี่ยวข้องกับจำนวนเต็ม เช่น จากการสังเกตผลบวกของจำนวนคี่ 1 = 1 = 12 1 + 3 = 4 = 22 1 + 3 + 5 = 9 = 32 แล้วทำนายแบบรูปทั่วไปว่า 1 + 3 + 5 + … + (2n – 1) = n2 ซึ่งเราจะเรียกข้อความนี้ว่าข้อความคาดการณ์ (Conjecture) เราไม่สามารถทราบได้ว่า รูปแบบที่เราได้กำหนดมาเป็นจริงหรือเท็จ หากเราตรวจสอบโดย การแทนจำนวนเต็มเข้าไปทั้งหมดจะไม่สามารถทำได้ เพราะอาจมีกรณีใดกรณีหนึ่งที่ทำให้ข้อความคาดการณ์นี้เป็นเท็จซึ่งเราจะต้องเสียเวลาในการแทนค่า กว่าที่จะหากรณีที่จะให้เป็นเท็จได้ ซึ่งเราจะใช้หลักอุปนัยเชิงคณิตศาสตร์ หลักอุปนัยเชิงคณิตศาสตร์ เป็นสัจพจน์ของเอปาโน (Peano Postulates) ข้อที่ 5 ซึ่งกล่าวว่า ถ้า S เป็นเซตย่อยใด ๆ ของเซตของจำนวนนับ ซึ่งมีสมบัติดังนี้ 1. 1 S 2. 1.2 การพิสูจน์โดยอุปนัยเชิงคณิตศาสตร์ นิยาม กำหนดให้ N เป็นจำนวนเต็มบวก สำหรับ n∈ N และ P(n) เป็นข้อความในพจน์ของ n P (1) เป็นจริง ถ้า P (k) เป็นจริงแล้ว P (k+1) เป็นจริง แล้ว P(n) เป็นจริงทุกค่า n ∈ N ในการพิสูจน์ข้อความ : สำหรับจำนวนนับ n ใดๆ P(n) เป็นจริง ซึ่งเขียนอยู่ในรูปสัญลักษณ์ เมื่อ P(n) คือ ข้อความที่เกี่ยวกับ n และ N แทนเซตของจำนวนนับ นั่นคือ N = { 1 , 2 , 3 , … } สรุปได้ว่าการพิสูจน์ข้อความในแบบ โดยใช้หลักอุปนัยเชิงคณิตศาสตร์เราจะต้องแสดง 2 ขั้นตอน คือ 1. แสดงว่า P (1) เป็นจริง (ขั้นตอนนี้เรียกว่า ขั้นฐานหลัก (basic step)
2. แสดงว่า เป็นจริง (ขั้นตอนนี้เรียกว่าขั้นตอนอุปนัย) (induction step)
ตัวอย่างที่ 1 จงใช้อุปนัยเชิงคณิตศาสตร์พิสูจน์ว่า 1 + 2 + 3 + … + n = สำหรับจำนวนเต็มบวก n ใดๆ
วิธีทำ ให้ P (n) แทนข้อความ 1 + 2 + 3 + … + n = …… (1)
จะแสดงว่า P (1) เป็นจริง 1 =
1 = 1
เพราะฉะนั้น P (1) เป็นจริง
จะพิสูจน์ว่าถ้า P (k) เป็นจริงแล้ว P (k+1) จะเป็นจริงด้วย
ให้ P (k) เป็นจริง 1+2+3+ …+ k = ...…. (2)
จะแสดงว่า P (k+1) เป็นจริงนั่น คือ
1+2+3+ …+ k + (k+1) =
จาก (2) บวกด้วย (k+1) ทั้งสองข้างจะได้ว่า
1+2+3+ …+ k + (k+1) = + (k+1)
=
=
ดังนั้น ถ้า P(k) เป็นจริงแล้ว P(k+1) เป็นจริงด้วยจาก (1) และ (2) โดยวิธีอุปนัยเชิงคณิตศาสตร์
สรุปได้ว่า P(n) เป็นจริงสำหรับทุกจำนวนเต็มบวก
หมายเหตุ (1) เรียกว่า ขั้นตอนฐานหลักและ (2) เรียกว่า ขั้นตอนอุปนัย
สรุปจากขั้นที่ 1 เราทราบว่า ข้อความคาดการณ์นี้เป็นจริง สำหรับค่า n = 1 และ จากขั้นที่ 2 เราทราบว่าต่อไปอีกว่า ถ้าข้อความคาดการณ์นี้จะเป็นจริง สำหรับค่า n = 1 + 1 = 2 ด้วย ทำนองเดียวกัน ก็จะเป็นจริงสำหรับ n = 2 + 1 = 3
และไปเรื่อยๆ นั่นคือ ถ้าขั้นตอน P(k + 1) เป็นเท็จ จะทำให้ข้อความอื่นๆ เท็จตามไปด้วย
1.3 สมบัติของเลขยกกำลัง
เลขยกกำลัง คือ การดำเนินการทางคณิตศาสตร์อย่างหนึ่งเขียนอยู่ในรูป ซึ่งประกอบด้วยสองจำนวน คือ ฐาน a และเลขชี้กำลัง (หรือกำลัง) n การยกกำลังมีความหมายเหมือนการคูณซ้ำๆ กัน คือ a คูณกันเป็นจำนวน n ตัว เมื่อ n เป็นจำนวนเต็มบวก เช่น
n ตัว
โดยปกติเลขชี้กำลังจะแสดงเป็นตัวยกอยู่ด้านขวาของฐานจำนวน an อ่านว่า a ยกกำลัง n
ถ้า a เป็นจำนวนใด ๆ m และ n เป็นจำนวนเต็มบวกแล้ว
1. (am)(an) = am + n 2. (am)n = amn
3. = am – n
4. a0 = 1
5. a-m =
6. (ab)n = anbn
1.4 รากที่ n
บทนิยาม ถ้า a และ x เป็นจำนวนจริง และ n เป็นจำนวนเต็มบวก ที่มีค่ามากกว่า 1 และ x จะเป็น
รากที่ n ของ a ก็ต่อเมื่อ xn = a
จำนวนจริงที่เป็นรากที่ n ของ a อาจจะมีได้หลายค่า แต่จะมีจำนวนจริงจำนวนหนึ่ง ซึ่งเราเรียกว่า จำนวนจริงหลักของรากที่ n ของ a และเขียนด้วยสัญลักษณ์
ถ้า a เป็นจำนวนจริง และ n เป็นจำนวนเต็มบวกที่มีค่ามากกว่า 1 แล้ว จะมีความหมาย ดังนี้
ตารางที่ 1 ตารางแสดงการหาค่ารากที่ n เมื่อ n เป็นจำนวนเต็มบวกใดๆ
n a > 0 a < 0 a = 0
จำนวนคู่ คือ รากที่ n
ที่เป็นบวกของ a ไม่เป็นจำนวนจริง
= 0
จำนวนคี่ คือ รากที่ n
ที่เป็นบวกของ a คือ รากที่ n
ที่เป็นลบของ a = 0
คือ รากที่ n ที่เป็นบวกของ a อ่านว่า กรณฑ์ที่ n ของ a หรือ ค่าหลักของ รากที่ n ของ a และเครื่องหมาย เรียกว่า เครื่องหมายกรณฑ์ เรียก n ว่า ลำดับหรือดัชนีของ กรณฑ์
ถ้า n เท่ากับสอง แล้วเขียน แทน
1.5 รากอนันต์
รากอนันต์มีลักษณะเป็นการติดค่ารากซ้อนกันไปแบบไม่รู้จบ รูปแบบของโจทย์ที่เป็นรากอนันต์ มี ดังนี้
รูปแบบที่ 1 การหารากอนันต์ของ
รูปแบบที่ 2 การหารากอนันต์ของ
รูปแบบที่ 3 การหารากอนันต์ของ
รูปแบบที่ 4 การหารากอนันต์ของ
รูปแบบที่ 5 การหารากอนันต์ของ
รูปแบบที่ 6 การหารากอนันต์ของ
รูปแบบที่ 7 การหารากอนันต์ในรูปแบบของสมการ
รูปแบบที่ 8 การหารากอนันต์ในรูปแบบของสมการ
1.6 สมการพหุนาม (Polynomial Equations)
พหุนาม คือ นิพจน์ที่สามารถเขียนในรูปเอกนามหรือผลบวกของเอกนามตั้งแต่ 2 เอกนามขึ้นไป สำหรับสมการพหุนามกำลังสองที่แยกตัวประกอบไม่ได้ สามารถใช้สูตรได้ดังนี้
สมมติว่าโจทย์ คือ ax2 + bx + c = 0 คำตอบของสมการคือ
ตัวอย่าง จงแก้สมการพหุนาม x2 + 10x + 6 = 0
วิธีทำ จากสูตร
พบว่า a = 1 , b = 1 , c = 6
x
ดังนั้น คำตอบของสมการ คือ และ
1.7 ลำดับและอนุกรม
ลำดับ (Sequence) นิยามของลำดับ คือ ฟังก์ชันที่มีโดเมนเป็นเซตของจำนวนเต็มบวก n ตัวแรก ซึ่งเรียกว่า ลำดับจำกัด ลำดับที่มีโดเมนเป็นเซตของจำนวนเต็มบวก เรียกว่า ลำดับอนันต์
ลำดับเลขคณิต (Arithmetic Sequence) ถ้า a1 , a2 , a3 , …, an , an + 1 เป็นจำนวนจริงที่เรียงกันเป็นลำดับเลขคณิตแล้ว จะมีสมบัติว่า a2 – a1 = a3 – a2 = a4 – a3 = … = an+1 – an = d เมื่อ d เป็นค่าคงตัว เรียก d ว่า “ผลต่างร่วม” พจน์ทั่วไปของลำดับเลขคณิต an = a1 + (n
การแปล กรุณารอสักครู่..
