Nutrients 2013, 5, 4521-4539; doi:10.3390/nu5114521
nutrients
ISSN 2072-6643
www.mdpi.com/journal/nutrients
Review
Cobalamin Deficiency: Clinical Picture and
Radiological Findings
Chiara Briani 1,*, Chiara Dalla Torre 1, Valentina Citton 2, Renzo Manara 2,3, Sara Pompanin 1,
Gianni Binotto 4 and Fausto Adami 4
1 Department of Neurosciences, Neurological, Psychiatric, Sensorial, Reconstructive and
Rehabilitative Sciences, University of Padova, Via Giustiniani 5, Padova 35128, Italy;
E-Mails: chiara.dallatorre83@gmail.com (C.D.T.); sara.pompanin@studenti.unipd.it (S.P.)
2 IRCCS San Camillo, Venezia 30011, Italy; E-Mails: valentinacitton@gmail.com (V.C.);
rmanara@unisa.it (R.M.)
3 Neuroradiology, University of Salerno, Baronissi 84081, Italy
4 Department of Medicine, Hematology Unit, University of Padova, Padova 35128, Italy;
E-Mails: gianni.binotto@unipd.it (G.B.); f.adami@unipd.it (F.A.)
* Author to whom correspondence should be addressed; E-Mail: chiara.briani@unipd.it;
Tel.: +39-049-8213-600; Fax: +39-049-8751-770.
Received: 22 September 2013; in revised form: 18 October 2013 / Accepted: 28 October 2013 /
Published: 15 November 2013
Abstract: Vitamin B12 deficiency causes a wide range of hematological, gastrointestinal,
psychiatric and neurological disorders. Hematological presentation of cobalamin
deficiency ranges from the incidental increase of mean corpuscular volume and neutrophil
hypersegmentation to symptoms due to severe anemia, such as angor, dyspnea on exertion,
fatigue or symptoms related to congestive heart failure, such as ankle edema, orthopnea
and nocturia. Neuropsychiatric symptoms may precede hematologic signs and are
represented by myelopathy, neuropathy, dementia and, less often, optic nerve atrophy. The
spinal cord manifestation, subacute combined degeneration (SCD), is characterized by
symmetric dysesthesia, disturbance of position sense and spastic paraparesis or
tetraparesis. The most consistent MRI finding is a symmetrical abnormally increased T2
signal intensity confined to posterior or posterior and lateral columns in the cervical and
thoracic spinal cord. Isolated peripheral neuropathy is less frequent, but likely overlooked.
Vitamin B12 deficiency has been correlated negatively with cognitive functioning in
healthy elderly subjects. Symptoms include slow mentation, memory impairment, attention
deficits and dementia. Optic neuropathy occurs occasionally in adult patient. It is
OPEN ACCESS
Nutrients 2013, 5 4522
characterized by symmetric, painless and progressive visual loss. Parenteral replacement
therapy should be started soon after the vitamin deficiency has been established.
Keywords: vitamin B12; cobalamin; neuropathy; subacute combined
degeneration; neuroimaging
1. Introduction
Vitamin B12 or cobalamin (formerly known as cyanocobalamin, because of an artifactual cyano
group added to the cobalamin molecule during the original extraction procedure from the liver) is
produced by bacteria in the large bowel of humans and by external bacteria and fungi. However,
cobalamin from the former source is not absorbed, and humans need to introduce it solely from the
diet [1]. The major sources of cobalamin are animal proteins, mainly meats and eggs [2]. An average
non-vegetarian diet in western countries contains 5 to 8 μg of cobalamin per day. The recommended
daily allowance is 2.4 μg for men and non-pregnant women, 2.6 for pregnant women, 2.8 μg for
lactating women and 1.5–2 μg for children up to 18 years. Since a vegetarian diet supplies no more
than 0.5 μg/day of cobalamin, most vegetarians are at risk of cobalamin deficiency [3].
Cobalamin is stable at cooking process temperatures; the likelihood of its transformation into
inactive compounds by ascorbic acid [4] has not been later confirmed. Since the total-body cobalamin
content is two to 5 mg in adults, a complete discontinuation in the absorption will take 3–5 years to
deplete cobalamin stores.
2. Vitamin B12: Physiology and Causes of Deficiency
Cobalamin from biological sources is provided in the coenzyme form (5′-adenosylcobalamin) as a
protein-vitamin complex, through non-specific protein-vitamin binding. At the low pH of the stomach,
proteolytic digestion by pepsin occurs, which is the prerequisite for cobalamin release. Once released,
cobalamin rather than the gastric intrinsic factor (IF) binds preferentially to haptocorrin (R-protein), a
high-affinity cobalamin-binding protein in the saliva and gastric juice, resulting in the so-called
“holo-R-protein”. In the second part of the duodenum, pancreatic proteases degrade the holo-R-protein
complex, and the resulting free cobalamin binds to IF. The cobalamin-IF complex is stable and
resistant to proteolysis in pH ranges of 3 to 9. Ileal IF-cobalamin receptors are selective for IF-bound
cobalamin and not for R-bound cobalamin; thus, ileal pancreatic proteases are necessary as much as
gastric peptic proteases to ensure optimal cobalamin absorption [1]. IF secretion parallels
the secretion of gastric acid, being stimulated by food and inhibited by H2 blockers, as well
as by proton pump inhibitors [5]. Long-term use of these two classes of drugs may lead to
food-cobalamin malabsorption.
The final step of cobalamin absorption takes place in the ileum through specific membrane-associated
IF-cobalamin receptors on the enterocytes. The ileal IF-cobalamin receptor is composed of a protein
complex called “cubam” [6]. Dysfunction of the cubam complex leads to Imerslund-Gräsbeck
syndrome. Further steps occurring in the enterocytes are ill-defined. As a matter of fact, three to 5 h
Nutrients 2013, 5 4523
after entering the enterocyte, the cobalamin appears in the portal blood bound to transcobalamin II
(TC II), a specific protein secreted unidirectionally across the basolateral surface of the enterocyte.
The TC II-cobalamin complex has a very short plasmatic half-life, being rapidly cleared mostly
because of its rapid binding to specific TC II surface receptors on several cells [7]. Once internalized
by endocytosis, cobalamin is dissociated from TC II, then reduced and converted to coenzyme forms
i.e., adenosylcobalamin (coenzyme of methylmalonyl-CoA mutase, which converts methylmalonyl-CoA
to succinyl-CoA) and methylcobalamin (a coenzyme of methionine synthetase which catalyzes the
transfer of methyl groups to homocysteine to form methionine). In the latter reaction, 5-methyltetrahydrofolate
donates its methyl group to cobalamin, regenerating methylcobalamin. In its turn,
methionine can be adenylated to form adenosyl-methionine, which, in turn, donates its methyl group in
a large number of biologic methylations involving proteins, neurotransmitters and nucleic acids.
2.1. Cobalamin-Folate Relationships
Tetrahydrofolate (THF) is required for the activity of thymidylate synthetase (TS) and DNA
synthesis. Other than folate precursor deficiency itself, also cobalamin deficiency contributes to
functional intracellular deficiency of THF. Cobalamin indeed is required by methione synthetase for
the generation of methionine from homocysteine; meanwhile, THF is generated from 5-methyl THF.
In fact, only THF can ultimately act as a coenzyme of the TS.
As a consequence of the deficient TS activity, the synthesis of deoxythymidine monophosphate
(dTMP) and deoxythymidine triphosphate (dTTP) from deoxyuridine monophosphate (dUMP) via
thymidylate synthase is impaired and dUMP (and, eventually, deoxyuridine triphosphate (dUTP))
accumulates. Since DNA-polymerase does not distinguish dUTP from dTTP, increased amounts of
dUTP are misincorporated into DNA. Appropriate DNA-repair enzymes (DNA uracil glycosylase)
recognize the faulty incorporation and excise dUTP, but, lacking an adequate dTTP supply, effective
repair does not occur, leading to DNA strands breaking.
Megaloblastic changes due to cobalamin or folate deficiency are clinically indistinguishable. The
cause of cobalamin deficiency is not generally revealed until specific laboratory tests are done; on the
contrary, the recent patient’s history may give clues to the possible folate deficiency. Likely due to the
widespread folate supplementation in Western countries, the hematologic picture of cobalamin
deficiency is often attenuated, and neurological presentations may become more common and
overlooked. It is currently not generally accepted that folate deficiency may induce neurological
manifestations, so that the occurrence of neurological symptoms in the presence of folate deficiency
should prompt investigations aimed at ruling out cobalamin deficiency [1].
2.2. Causes of Cobalamin Deficiency
A strict vegetarian (vegan) diet contains very little cobalamin; less strict vegetarians
(lacto-vegetarians, ovo-vegetarians and lacto-ovo-vegetarians) may have subclinical deficiency, as
shown by increased blood methylmalonic acid (MMA) and homocysteine concentrations [8]. Since
there is clear evidence of abnormal cobalamin metabolism in vegetarians and hyper-homocysteinemia
is a risk factor, especially for stroke and vascular dementia, vegetarians are advised to take cobalamin
supplements lifelong [3].
Nutrients 2013, 5 4524
In developed countries, the diet is rich in meat and cobalamin-rich foods; thus, malabsorption is the
most common cause of cobalamin deficiency. Infants born to vegetarian mothers are at risk of
cobalamin deficiency and may present with megaloblastic anemia, involuntary movements and skin
pigmentation [9,10]. Most people with insufficient cobalamin intake are, however, poverty-imposed
vegetarians living in developing countries and represent a worldwide health problem.
Some of the subjects with subclinical cobalamin deficiency may have normal serum cobalamin
concentrations and may be classified as “normal asymptomatic subjects”, although the minimum
concentrations of serum vitamin B12 for optimal neuronal health are still unknown, especially in the
later stages of life.
2.3. Diseases Leading to Insufficient Cobalamin Absorptio
สารอาหาร 2013, 5, 4521-4539 doi:10.3390 / nu5114521สารอาหารนอก 2072-6643www.mdpi.com/journal/nutrientsตรวจทานขาด cobalamin: ภาพทางคลินิก และพบ radiologicalBriani รียร์ 1, *, ทอร์เร คา Dalla รียร์ 1 วาเลน Citton 2, Renzo Manara 2,3, Pompanin ซาร่า 1Gianni Binotto 4 และ Fausto Adami 41 กรม Neurosciences ระบบประสาท จิตเวช Sensorial ศัลยศาสตร์ และRehabilitative ศาสตร์ มหาวิทยาลัยของปา ผ่าน Giustiniani 5 ปา 35128 อิตาลีอีเมล์: chiara.dallatorre83@gmail.com (C.D.T.); sara.pompanin@studenti.unipd.it (บริษัทเอสพี)2 IRCCS ซานคามิลโล 30011 เวเนเซีย อิตาลี อีเมล์: valentinacitton@gmail.com (V.C.);rmanara@unisa.it (R.M.)3 neuroradiology มหาวิทยาลัยเลอร์ Baronissi 84081 อิตาลีกรมการแพทย์ หน่วยโลหิต มหาวิทยาลัยปา ปา 35128 อิตาลี 4อีเมล์: gianni.binotto@unipd.it (G.B.); f.adami@unipd.it (หลังการเก็บเกี่ยว)* ผู้เขียนที่สื่อสารควรให้ความสนใจ อีเมล์: chiara.briani@unipd.it;โทรศัพท์: + 39-049-8213-600 โทรสาร: + 39-049-8751-770รับ: 22 2013 กันยายน ในการแบบฟอร์มแก้ไข: 18 2013 ตุลาคม / ยอมรับ: 28 2013 ตุลาคม /เผยแพร่: 15 2013 พฤศจิกายนบทคัดย่อ: ขาดวิตามินบี 12 ทำให้ความหลากหลายของ hematological ระบบโรคทางจิตเวช และระบบประสาท งานนำเสนอ hematological ของ cobalaminหมายถึง ขาดช่วงจากการเพิ่มขึ้นของเบ็ดเตล็ดของ neutrophil และปริมาณเฉลี่ยของhypersegmentation กับอาการเนื่องจากโรคโลหิตจางรุนแรง เช่น angor, dyspnea ในกำลังที่ต้องใช้ความเมื่อยล้าหรืออาการที่เกี่ยวข้องกับ congestive หัวใจล้มเหลว เช่นข้อเท้าอาการบวมน้ำ orthopneaและ nocturia Neuropsychiatric อาการอาจนำหน้าอาการ hematologic และมีแสดง โดย myelopathy, neuropathy สมองเสื่อม และ ไม่บ่อย ประสาทตาฝ่อ ที่เป็นลักษณะการแห่แหนสันหลัง การเสื่อมสภาพรวมกึ่ง (SCD),dysesthesia สมมาตร รบกวนความรู้สึกและ spastic paraparesis ตำแหน่ง หรือtetraparesis ค้นหา MRI มากที่สุดสอดคล้องเป็น T2 เพิ่มขึ้นอย่างผิดปกติแบบสมมาตรสัญญาณความเข้มขังไปหลัง หรือหลัง และด้านข้างในมดลูก และทรวงอกกระดูกสันหลัง Neuropathy พ่วงแยกเป็นน้อยบ่อย แต่อาจมองข้ามขาดวิตามินบี 12 ได้ถูก correlated ในเชิงลบกับการทำงานรับรู้ในเรื่องผู้สูงอายุมีสุขภาพดี อาการรวมเอกสารช้า ผลหน่วยความจำ ความสนใจขาดดุลและสมองเสื่อม Neuropathy แก้วเกิดขึ้นบางครั้งในผู้ป่วยผู้ใหญ่ จึงเปิดเข้าสารอาหาร 2013, 5 4522ลักษณะสมมาตร เจ็บปวด และก้าวหน้ามองเห็นขาดทุน เปลี่ยน parenteralการรักษาควรเริ่มต้นทันทีหลังจากไวตามินที่ก่อตั้งขึ้นคำสำคัญ: วิตามินบี 12 cobalamin neuropathy รวมกึ่งเสื่อมสภาพ neuroimaging1. บทนำ(เดิมเรียกว่า cyanocobalamin เนื่องจากการ artifactual cyano cobalamin หรือวิตามินบี 12กลุ่มเพิ่มโมเลกุล cobalamin ในระหว่างวิธีสกัดดั้งเดิมจากตับ) เป็นผลิต โดยแบคทีเรียในลำไส้ใหญ่ของมนุษย์ และ โดยภายนอกของแบคทีเรียและเชื้อรา อย่างไรก็ตามไม่มีการดูดซึม cobalamin จากแหล่งเดิม และมนุษย์จำเป็นต้องแนะนำแต่เพียงผู้เดียวจากการอาหาร [1] แหล่งมาสำคัญของ cobalamin มีโปรตีนสัตว์ เนื้อสัตว์และไข่ [2] ส่วนใหญ่ โดยเฉลี่ยอาหารมังสวิรัติไม่ใช่ประเทศตะวันตกประกอบด้วย μg 5-8 ของ cobalamin ต่อวัน ที่แนะนำμg 2.4 สำหรับชายและหญิงมีครรภ์ 2.6 สำหรับหญิงตั้งครรภ์ μg 2.8 สำหรับเป็นเบี้ยเลี้ยงประจำวันการศึกษาหญิงและ 1.5 – 2 μg เด็กค่าปี 18 เนื่องจากอาหารมังสวิรัติเครื่องไม่ได้กว่า 0.5 μg วันของ cobalamin มังสวิรัติส่วนใหญ่จะเสี่ยงขาด cobalamin [3]Cobalamin มีเสถียรภาพกระบวนการอุณหภูมิ ทำอาหาร ความเป็นไปได้ของการเปลี่ยนแปลงไปสารงาน ด้วยกรดแอสคอร์บิค [4] มีไม่รับในภายหลังยืนยัน ตั้งแต่ cobalamin ร่างกายทั้งหมดเนื้อหามี 2-5 มิลลิกรัมในผู้ใหญ่ discontinuation สมบูรณ์ในการดูดซึมจะใช้เวลา 3 – 5 ปีแหล่งร้านค้า cobalamin2. วิตามินบี 12: สรีรวิทยาและสาเหตุของการขาดCobalamin จากแหล่งชีวภาพไว้ในแบบฟอร์ม coenzyme (5′ adenosylcobalamin) เป็นการคอมเพล็กซ์วิตามินโปรตีน โดยรวมไม่ใช่เฉพาะโปรตีนวิตามิน ที่ pH ต่ำในกระเพาะอาหารย่อยอาหาร proteolytic โดยเพพซินเกิดขึ้น ซึ่งเป็นข้อกำหนดเบื้องต้นสำหรับ cobalamin เมื่อนำออกใช้cobalamin มากกว่าปัจจัย intrinsic ในกระเพาะอาหาร (ถ้า) binds โน้ตเพื่อ haptocorrin (R-โปรตีน), การhigh-affinity cobalamin-binding protein in the saliva and gastric juice, resulting in the so-called“holo-R-protein”. In the second part of the duodenum, pancreatic proteases degrade the holo-R-proteincomplex, and the resulting free cobalamin binds to IF. The cobalamin-IF complex is stable andresistant to proteolysis in pH ranges of 3 to 9. Ileal IF-cobalamin receptors are selective for IF-boundcobalamin and not for R-bound cobalamin; thus, ileal pancreatic proteases are necessary as much asgastric peptic proteases to ensure optimal cobalamin absorption [1]. IF secretion parallelsthe secretion of gastric acid, being stimulated by food and inhibited by H2 blockers, as wellas by proton pump inhibitors [5]. Long-term use of these two classes of drugs may lead tofood-cobalamin malabsorption.The final step of cobalamin absorption takes place in the ileum through specific membrane-associatedIF-cobalamin receptors on the enterocytes. The ileal IF-cobalamin receptor is composed of a proteincomplex called “cubam” [6]. Dysfunction of the cubam complex leads to Imerslund-Gräsbecksyndrome. Further steps occurring in the enterocytes are ill-defined. As a matter of fact, three to 5 hNutrients 2013, 5 4523after entering the enterocyte, the cobalamin appears in the portal blood bound to transcobalamin II(TC II), a specific protein secreted unidirectionally across the basolateral surface of the enterocyte.The TC II-cobalamin complex has a very short plasmatic half-life, being rapidly cleared mostlybecause of its rapid binding to specific TC II surface receptors on several cells [7]. Once internalizedby endocytosis, cobalamin is dissociated from TC II, then reduced and converted to coenzyme formsi.e., adenosylcobalamin (coenzyme of methylmalonyl-CoA mutase, which converts methylmalonyl-CoAto succinyl-CoA) and methylcobalamin (a coenzyme of methionine synthetase which catalyzes thetransfer of methyl groups to homocysteine to form methionine). In the latter reaction, 5-methyltetrahydrofolatedonates its methyl group to cobalamin, regenerating methylcobalamin. In its turn,methionine can be adenylated to form adenosyl-methionine, which, in turn, donates its methyl group ina large number of biologic methylations involving proteins, neurotransmitters and nucleic acids.2.1. Cobalamin-Folate RelationshipsTetrahydrofolate (THF) is required for the activity of thymidylate synthetase (TS) and DNAsynthesis. Other than folate precursor deficiency itself, also cobalamin deficiency contributes tofunctional intracellular deficiency of THF. Cobalamin indeed is required by methione synthetase forthe generation of methionine from homocysteine; meanwhile, THF is generated from 5-methyl THF.In fact, only THF can ultimately act as a coenzyme of the TS.As a consequence of the deficient TS activity, the synthesis of deoxythymidine monophosphate(dTMP) and deoxythymidine triphosphate (dTTP) from deoxyuridine monophosphate (dUMP) viathymidylate synthase is impaired and dUMP (and, eventually, deoxyuridine triphosphate (dUTP))accumulates. Since DNA-polymerase does not distinguish dUTP from dTTP, increased amounts ofdUTP are misincorporated into DNA. Appropriate DNA-repair enzymes (DNA uracil glycosylase)recognize the faulty incorporation and excise dUTP, but, lacking an adequate dTTP supply, effectiverepair does not occur, leading to DNA strands breaking.Megaloblastic changes due to cobalamin or folate deficiency are clinically indistinguishable. Thecause of cobalamin deficiency is not generally revealed until specific laboratory tests are done; on thecontrary, the recent patient’s history may give clues to the possible folate deficiency. Likely due to thewidespread folate supplementation in Western countries, the hematologic picture of cobalamindeficiency is often attenuated, and neurological presentations may become more common andoverlooked. It is currently not generally accepted that folate deficiency may induce neurologicalmanifestations, so that the occurrence of neurological symptoms in the presence of folate deficiencyshould prompt investigations aimed at ruling out cobalamin deficiency [1].2.2. Causes of Cobalamin DeficiencyA strict vegetarian (vegan) diet contains very little cobalamin; less strict vegetarians(lacto-vegetarians, ovo-vegetarians and lacto-ovo-vegetarians) may have subclinical deficiency, as
shown by increased blood methylmalonic acid (MMA) and homocysteine concentrations [8]. Since
there is clear evidence of abnormal cobalamin metabolism in vegetarians and hyper-homocysteinemia
is a risk factor, especially for stroke and vascular dementia, vegetarians are advised to take cobalamin
supplements lifelong [3].
Nutrients 2013, 5 4524
In developed countries, the diet is rich in meat and cobalamin-rich foods; thus, malabsorption is the
most common cause of cobalamin deficiency. Infants born to vegetarian mothers are at risk of
cobalamin deficiency and may present with megaloblastic anemia, involuntary movements and skin
pigmentation [9,10]. Most people with insufficient cobalamin intake are, however, poverty-imposed
vegetarians living in developing countries and represent a worldwide health problem.
Some of the subjects with subclinical cobalamin deficiency may have normal serum cobalamin
concentrations and may be classified as “normal asymptomatic subjects”, although the minimum
concentrations of serum vitamin B12 for optimal neuronal health are still unknown, especially in the
later stages of life.
2.3. Diseases Leading to Insufficient Cobalamin Absorptio
การแปล กรุณารอสักครู่..
