This survey supports previous reports showing that marine environments, and especially sponges, are sources for novel bioactive metabolite producers with biotechnological use, and that geographic and environmental factors may affect the occurrence of these biochemical pathways and bioactivities. In fact, our data currently suggest that marine sponges support a diverse community of Kocuria species distributed among seven taxa in contrast with the single lineage observed for members of the genus Micrococcus. The pre-screening methodology implemented in this survey, developed in a framework of enhanced understanding of microbial and chemical ecology associated to the marine environment, will certainly increase the discovery and development of novel natural products from marine sources. Our results provide an initial study of the scale-up production conditions of kocurin as well as new insights into the metabolism of these sponge symbionts, that so far has been limited to the production of this molecule, a new thiazolyl peptide from a family of compounds well represented among different lineages of terrestrial actinomycetes. The presence of type I and type II PKS and NRPS pathways in this family of actinomycetes has not been translated into the production of any bioactive compound that could be revealed with our screening approach. The synthesis of kocurin is unrelated with any these biosynthetic systems and additional experiments would be necessary to confirm if they are being expressed and involved in the synthesis of additional molecules. The fact that the same thiazolyl peptide was found in bacterial isolates independently of their geographic location (marine sponges and Antarctic mats), suggests a wide geographic distribution of this antibacterial compound. Kocurin is a new antibiotic molecule with unique chemical structure and biological activity facing the rise in drug-resistant pathogens.