Material properties of polycrystalline materials are often modeled in a similar fashion as single crystals thereby neglecting the internal microstructure. Unfortunately, most of the available deposition technologies only provide polycrystalline or amorphous rather than single crystal deposition. The only deposition process which provides single crystal growth in the processing reactor is the atomic layer deposition (ALD) which provides a very low growth rate and is therefore rather expensive with respect to time. Nevertheless, if crystalline structures have to be used, for instance in semiconducting materials, expensive single crystal deposition or growth methods have to be applied anyways. For most other applications, however, amorphous and polycrystalline regions are sufficient for device operation. For instance a crystalline structure of interconnect lines, contacts, and dielectrics is generally not required. However, the down-scaling of the semiconductor devices has also resulted in a certain downscaling of the interconnect structures. With lower line dimensions, however, additional effects which need to be negligible have now to be considered as well. For instance the grain boundaries of all polycrystalline materials contain unsaturated bounds, which can bind impurities. As a consequence energetic barriers form at these sites. Another crucial effect is the enhanced diffusion due to a lowering of the activation energy at these grain boundaries and material interfaces.