The focuses of this study were to investigate the effect of sodium montmorillonite clay (MMT-Na) content on the physical properties and extent of enzymatic hydrolysis Polyvinyl Alcohol (PVA): Starch (S): Carboxymethyl Cellulose (CMC) nanocomposites using enzyme −amylase. The results of this work have revealed that films with MMT-Na content at 5 wt% exhibited a significantly reduced rate and extent of starch hydrolysis. The results suggest that this may have been attributed to interactions between PVA:S:CMC and MMT-Na that further prevented enzymatic attack on the remaining starch phases within the blend. The total solids that remained after 4320 min were 65.46 wt% (PVA:S:CMC); 67.91 wt% (PVA:S:CMC:1% MMT-Na); 78.43 wt% (PVA:S:CMC:3% MMT-Na); 80.24 wt% (PVA:S:CMC:5% MMT-Na). The rate of glucose production from each nanocomposite substrates were decresed significantly as the MMT-Na percentage increased from 0 to 5% (W/W). At the level of 5% (W/W) MMT-Na, the films showed the lowest rate of glucose production values (18.95 μg/ml h). With the increase of the MMT concentration from 0 to 5%, the UTS increased 5 from 18.36 to 20.38 MPa, however, the strain to break (SB) decreased noticeably from 35.56 to 5.22%.