GUIDING PRINCIPLE III
Science and technology/engineering are integrally related to mathematics.
Mathematics is an essential tool for scientists and engineers because it specifies in precise and abstract (general) terms many attributes of natural phenomena and manmade objects and the nature of relationships among them. Mathematics facilitates precise analysis and prediction.
Take, for example, the equation for one of Newton’s Laws: F = ma (force equals mass times acceleration). This remarkably succinct description states the invariable relationship among three fundamental features of our known universe. Its mathematical form permits all kinds of analyses and predictions.
Other insights come from simple geometric analysis applied to the living world. For example, volume increases by the cube of an object’s fundamental dimension while area increases by the square. Thus, in an effort to maintain constant body temperature, most small mammals metabolize at much higher rates than larger ones. It is hard to imagine a more compelling and simple explanation than this for the relatively high heart rate of rodents versus antelopes.
Even simpler is the quantification of dimensions. How small is a bacterium, how large is a star, how dense is lead, how fast is sound, how hard is a diamond, how sturdy is the bridge, how safe is the plane? These questions can all be answered mathematically. And with these analyses, all kinds of intellectual and practical questions can be posed and solved.
Teachers, curriculum coordinators, and others who help implement this Framework must be aware of the level of mathematical knowledge needed for each science and technology/ engineering course, especially at the high school level, and must ensure that the appropriate mathematical knowledge has already been taught or is being taught concurrently.
GUIDING PRINCIPLE IV
An effective program in science and technology/engineering addresses students’ prior knowledge and misconceptions.
Students are innately curious about the world and wonder how things work. They may make spontaneous, perceptive observations about natural objects and processes, and can often be found taking things apart and reassembling them. In many cases, they have developed mental models about how the world works. However, these mental models may be inaccurate, even though they make sense to the students, and inaccuracies work against learning.
Research into misconceptions demonstrates that children can hold onto misconceptions even while reproducing what they have been taught are the “correct answers.” For example, young
GUIDING PRINCIPLE III
Science and technology/engineering are integrally related to mathematics.
Mathematics is an essential tool for scientists and engineers because it specifies in precise and abstract (general) terms many attributes of natural phenomena and manmade objects and the nature of relationships among them. Mathematics facilitates precise analysis and prediction.
Take, for example, the equation for one of Newton’s Laws: F = ma (force equals mass times acceleration). This remarkably succinct description states the invariable relationship among three fundamental features of our known universe. Its mathematical form permits all kinds of analyses and predictions.
Other insights come from simple geometric analysis applied to the living world. For example, volume increases by the cube of an object’s fundamental dimension while area increases by the square. Thus, in an effort to maintain constant body temperature, most small mammals metabolize at much higher rates than larger ones. It is hard to imagine a more compelling and simple explanation than this for the relatively high heart rate of rodents versus antelopes.
Even simpler is the quantification of dimensions. How small is a bacterium, how large is a star, how dense is lead, how fast is sound, how hard is a diamond, how sturdy is the bridge, how safe is the plane? These questions can all be answered mathematically. And with these analyses, all kinds of intellectual and practical questions can be posed and solved.
Teachers, curriculum coordinators, and others who help implement this Framework must be aware of the level of mathematical knowledge needed for each science and technology/ engineering course, especially at the high school level, and must ensure that the appropriate mathematical knowledge has already been taught or is being taught concurrently.
GUIDING PRINCIPLE IV
An effective program in science and technology/engineering addresses students’ prior knowledge and misconceptions.
Students are innately curious about the world and wonder how things work. They may make spontaneous, perceptive observations about natural objects and processes, and can often be found taking things apart and reassembling them. In many cases, they have developed mental models about how the world works. However, these mental models may be inaccurate, even though they make sense to the students, and inaccuracies work against learning.
Research into misconceptions demonstrates that children can hold onto misconceptions even while reproducing what they have been taught are the “correct answers.” For example, young
การแปล กรุณารอสักครู่..