Titanium alloys parts are ideally suited for advanced aerospace systems because of their unique combination of high specific strength at both room temperature and moderately elevated temperature, in addition to excellent corrosion resistance. Despite these features, use of titanium alloys in engines and airframes is limited by cost. The alloys processing by powder metallurgy eases the obtainment of parts with complex geometry.
The metallurgy of titanium and titanium-base alloys has been intensely investigated in the last 50 years. Titanium has unique properties like its high strength-to-weight ratio, good resistance to many corrosive environments and can be used over a wide range of temperatures. Typical engineering applications of titanium alloys include the manufacture of cryogenic devices and aerospace components.
The high buy-to-fly ratio associated with many titanium components, combined with forging and machining difficulties and recent availability problems, has led to a strong drive for near-net titanium fabrication. A very promising method of attaining this goal is powder metallurgy (P/M).