If you live in a city apartment, finding room to store your possessions is a major problem--there never seems to be enough room. Suburban residents must be having similar problems because the growth in using off-site storage facilities is on the rise. Metaphorically, there never seem to be enough bins for all one needs to store. Mathematics comes to the rescue with the bin packing problem and its relatives. The bin packing problem raises the following question: given a finite collection of n weights w1, w2, w3, ... , wn, and a collection of identical bins with capacity C (which exceeds the largest of the weights), what is the minimum number k of bins into which the weights can be placed without exceeding the bin capacity C? Stripped of the mathematical formulation, we want to know how few bins are needed to store a collection of items. This problem, known as the 1-dimensional bin packing problem, is one of many mathematical packing problems which are of both theoretical and applied interest in mathematics.