The sizes of Ni and Ni/NiO nanoparticles were calculated from the X-ray peak broadening of the most intense reflection using the Scherrer’s formula [17], which is represented as
where is the shape coefficient for reciprocal lattice point (here, assuming ), the wavelength of the X-ray radiation (1.54056 Å), is the full width at half maximum (FWHM) of the peak, and is the Bragg angle.
The particle sizes of the samples obtained at 400°C at 15 min, 1 h, and 2 h calculated by (1) are showed in Table 1. As expected, particle sizes monotonically increase with the increasing calcination time. The particle size of the samples is in the range of 17–22 nm for hcp Ni, 9.8–30.2 nm for fcc Ni, and 18 nm for fcc NiO.
The magnetic properties of the samples obtained at 400°C for 15 min, 1 h, and 2 h were studied by recording the hysteresis (M-H) loops, as shown in Figure 3. The values of the coercive field and saturation magnetization of the samples are given in Table 1. The sample obtained at 15 min shows a ferromagnetic behavior with a saturation magnetization (Ms) of 2.8 emu/g. After 1 h of calcination, the Ms increases to 3.9 emu/g and to 5.2 emu/g for the sample annealed for 2 h. This increase in the saturation magnetization could be related to the increase of the fcc-Ni phase (ferromagnetic phase) with the calcination time. As previously mentioned, according to the XRD patterns after heat treatments of 15 min and 1 h, the samples consist in a mixture of hcp-Ni and fcc-Ni phases. As the calcination time increased, the hcp Ni was transformed to fcc Ni. According to the literature, the magnetic behavior of the hcp-Ni is not clear. Theoretically, the hcp Ni can be ferromagnetic [18], and some experimental proofs showed this behavior [19, 20]. However, other studies mentioned that the hcp Ni can also be nonmagnetic or antiferromagnetic. In our work, when the system is composed by hcp Ni and fcc Ni (sample obtained at 15 min), the saturation magnetization value is lower than the samples obtained at 1 h and 2 h. As the amount of fcc Ni is increased, a higher saturation magnetization value is obtained, supporting the nonmagnetic or weak magnetic behavior of the hcp phase. Similar results have been reported in the literature [21, 22].
The sizes of Ni and Ni/NiO nanoparticles were calculated from the X-ray peak broadening of the most intense reflection using the Scherrer’s formula [17], which is represented aswhere is the shape coefficient for reciprocal lattice point (here, assuming ), the wavelength of the X-ray radiation (1.54056 Å), is the full width at half maximum (FWHM) of the peak, and is the Bragg angle.The particle sizes of the samples obtained at 400°C at 15 min, 1 h, and 2 h calculated by (1) are showed in Table 1. As expected, particle sizes monotonically increase with the increasing calcination time. The particle size of the samples is in the range of 17–22 nm for hcp Ni, 9.8–30.2 nm for fcc Ni, and 18 nm for fcc NiO.The magnetic properties of the samples obtained at 400°C for 15 min, 1 h, and 2 h were studied by recording the hysteresis (M-H) loops, as shown in Figure 3. The values of the coercive field and saturation magnetization of the samples are given in Table 1. The sample obtained at 15 min shows a ferromagnetic behavior with a saturation magnetization (Ms) of 2.8 emu/g. After 1 h of calcination, the Ms increases to 3.9 emu/g and to 5.2 emu/g for the sample annealed for 2 h. This increase in the saturation magnetization could be related to the increase of the fcc-Ni phase (ferromagnetic phase) with the calcination time. As previously mentioned, according to the XRD patterns after heat treatments of 15 min and 1 h, the samples consist in a mixture of hcp-Ni and fcc-Ni phases. As the calcination time increased, the hcp Ni was transformed to fcc Ni. According to the literature, the magnetic behavior of the hcp-Ni is not clear. Theoretically, the hcp Ni can be ferromagnetic [18], and some experimental proofs showed this behavior [19, 20]. However, other studies mentioned that the hcp Ni can also be nonmagnetic or antiferromagnetic. In our work, when the system is composed by hcp Ni and fcc Ni (sample obtained at 15 min), the saturation magnetization value is lower than the samples obtained at 1 h and 2 h. As the amount of fcc Ni is increased, a higher saturation magnetization value is obtained, supporting the nonmagnetic or weak magnetic behavior of the hcp phase. Similar results have been reported in the literature [21, 22].
การแปล กรุณารอสักครู่..