Introduction
Aquaculture is a major food- producing activity that is growing steadily, coupled with growing population density and land use needs of other industries. To maintain growth, aquaculture must shift to intensive or semi-intensive practices, effective and sustainable use of resources, and sustainable environmental stewardship. This often requires application of technologies that increase production efficiency and avoids competition for space and resources with other activities, such as agriculture and ranching. Aquacultural practices must be sustainable and minimally destructive to the environment, maintain quality and safety standards, and enable efficient use of space and natural resources and possibilities for expansion. Technology alternatives that reduce environmental impact and are efficient without affecting the health and growth of stock organisms must be incorporated into current practices. One option is to apply biofloc technology. Biofloc forms naturally in pond water as aggregates of nitrifying bacteria, organic material, inorganic flocculants, and suspended algae. These ingredients serve as food for the stock under cultivation and promote direct use of nitrogenous compounds in feces, urine, and food waste. Activity of nitrifying bacteria increases with addition of carbon sources and constant aeration, which maintains or significantly improves water quality during cultivation. Thus, the large volume of water required in intensive aquafarming is greatly reduced [1, 2, 3]. An example is using biofloc during cultivation of the Malaysian river prawn Macrobrachium rosenbergii. The approach led to major savings of water, without affecting the quality of the prawns