13B: Chemical KineticsTable of ContentsThe earliest analytical methods การแปล - 13B: Chemical KineticsTable of ContentsThe earliest analytical methods ไทย วิธีการพูด

13B: Chemical KineticsTable of Cont

13B: Chemical Kinetics
Table of Contents
The earliest analytical methods based on chemical kinetics—which first appear in the late nineteenth century—took advantage of the catalytic activity of enzymes. In a typical method of that era, an enzyme was added to a solution containing a suitable substrate and their reaction monitored for a fixed time. The enzyme’s activity was determined by the change in the substrate’s concentration. Enzymes also were used for the quantitative analysis of hydrogen peroxide and carbohydrates. The development of chemical kinetic methods continued in the first half of the twentieth century with the introduction of nonenzymatic catalysts and noncatalytic reactions.
Despite the diversity of chemical kinetic methods, by 1960 they were no longer in common use. The principal limitation to their broader acceptance was a susceptibility to significant errors from uncontrolled or poorly controlled variables—temperature and pH are two examples—and the presence of interferents that activate or inhibit catalytic reactions. By the 1980s, improvements in instrumentation and data analysis methods compensated for these limitations, ensuring the further development of chemical kinetic methods of analysis.3
13B.1 Theory and Practice
Every chemical reaction occurs at a finite rate, making it a potential candidate for a chemical kinetic method of analysis. To be effective, however, the chemical reaction must meet three necessary conditions: the reaction must not occur too quickly or too slowly; we must know the reaction’s rate law; and we must be able to monitor the change in concentration for at least one species. Let’s take a closer look at each of these needs.
The material in this section assumes some familiarity with chemical kinetics, which is part of most courses in general chemistry. For a review of reaction rates, rate laws, and integrated rate laws, see the material in Appendix 17.
Reaction Rate
The rate of the chemical reaction—how quickly the concentrations of reactants and products change during the reaction—must be fast enough that we can complete the analysis in a reasonable time, but also slow enough that the reaction does not reach equilibrium while the reagents are mixing. As a practical limit, it is not easy to study a reaction that reaches equilibrium within several seconds without the aid of special equipment for rapidly mixing the reactants. We will discuss two examples of instrumentation for studying reactions with fast kinetics in Section 13B.3.
Rate Law
The second requirement is that we must know the reaction’s rate law—the mathematical equation describing how the concentrations of reagents affect the rate—for the period in which we are making measurements. For example, the rate law for a reaction that is first order in the concentration of an analyte, A, is
rate = − d[A] / dt = k[A] 13.1
where k is the reaction’s rate constant.
Because the concentration of A decreases during the reactions, d[A] is negative. The minus sign in equation 13.1 makes the rate positive. If we choose to follow a product, P, then d[P] is positive because the product’s concentration increases throughout the reaction. In this case we omit the minus sign; see equation 13.21 for an example.
An integrated rate law often is a more useful form of the rate law because it is a function of the analyte’s initial concentration. For example, the integrated rate law for equation 13.1 is
ln[A]t = ln[A]0 − kt 13.2
or
[A]t = [A]0e−kt 13.3
where [A]0 is the analyte’s initial concentration and [A]t is the analyte’s concentration at time t.
Unfortunately, most reactions of analytical interest do not follow a simple rate law. Consider, for example, the following reaction between an analyte, A, and a reagent, R, to form a single product, P
kf
A + R ⇋ P
kb
where kf is the rate constant for the forward reaction, and kb is the rate constant for the reverse reaction. If the forward and reverse reactions occur as single steps, then the rate law is
rate = −d[A]/ dt = kf [A] [R] − kb[P] 13.4
The first term, kf[A][R] accounts for the loss of A as it reacts with R to make P, and the second term, kb[P] accounts for the formation of A as P converts back to A and R.
Although we know the reaction’s rate law, there is no simple integrated form that we can use to determine the analyte’s initial concentration. We can simplify equation 13.4 by restricting our measurements to the beginning of the reaction when the product’s concentration is negligible. Under these conditions we can ignore the second term in equation 13.4, which simplifies to
rate = −d[A] / dt = kf[A] [R] 13.5
The integrated rate law for equation 13.5, however, is still too complicated to be analytically useful. We can further simplify the kinetics by carefully adjusting the reaction conditions.4 For example, we can ensure pseudo-first-order kinetics by using a large excess of R so that its concentration remains essentially constant during the time we are monitoring the reaction. Under these conditions equation 13.5 simplifies to
rate = −d[A] / dt = kf [A] [R]0 = k′[A] 13.6
where k′ = kf[R]0.
To say that the reaction is pseudo-first-order in A means that the reaction behaves as if it is first order in A and zero order in R even though the underlying kinetics are more complicated. We call k ′ the pseudo-first-order rate constant.
The integrated rate laws for equation 13.6 are
ln[A]t = ln[A]0 − k′t 13.7
or
[A]t = [A]0e−k′t 13.8
It may even be possible to adjust the conditions so that we use the reaction under pseudo-zero-order conditions.
rate = −d[A] / dt = kf[A]0[R]0 = k′′ 13.9
[A]t = [A]0 − k′′t 13.10
where k′′ = kf [A]0[R]0.
To say that a reaction is pseudo-zero-order means that the reaction behaves as if it is zero order in A and zero order in R even though the underlying kinetics are more complicated. We call k ′′ the pseudo-zero-order rate constant.
Equation 13.10 is the integrated rate law for equation 13.9.
Monitoring the Reaction
The final requirement is that we must be able to monitor the reaction's progress by following the change in concentration for at least one of its species. Which species we choose to monitor is not important.it can be the analyte, a reagent reacting with the analyte, or a product. For example, we can determine concentration of phosphate in a sample by first reacting it with Mo(VI) to form 12.molybdophosphoric acid (12-MPA).
H3PO4(aq) + 6Mo(VI)(aq)+ → 12-MPA(aq) + 9H+(aq) 13.11
Next, we reduce 12-MPA to form heteropolyphosphomolybdenum blue, PMB. The rate of formation of PMB is measured spectrophotometrically, and is proportional to the concentration of 12-MPA. The concentration of 12-MPA, in turn, is proportional to the concentration of phosphate.5 We also can follow reaction 13.11 spectrophotometrically by monitoring the formation of the yellow-colored 12-MPA.6
13B.2 Classifying Chemical Kinetic Methods
Figure 13.2 provides one useful scheme for classifying chemical kinetic methods of analysis. Methods are divided into two main categories: direct-computation methods and curve-fitting methods. In a direct-computation method we calculate the analyte’s initial concentration, [A]0, using the appropriate rate law. For example, if the reaction is first-order in analyte, we can use equation 13.2 to determine [A]0 if we have values for k, t, and [A]t. With a curve-fitting method, we use regression to find the best fit between the data—for example, [A]t as a function of time—and the known mathematical model for the rate law. If the reaction is first-order in analyte, then we fit equation 13.2 to the data using k and [A]0 as adjustable parameters.

Figure 13.2 Classification of chemical kinetic methods of analysis adapted from Pardue, H. L. “Kinetic Aspects of Analytical Chemistry,”Anal. Chim. Acta 1989, 216, 69–107.
Direct-Computation Fixed-Time Integral Methods
A direct-computation integral method uses the integrated form of the rate law. In a one-point fixed-time integral method, for example, we determine the analyte’s concentration at a single time and calculate the analyte’s initial concentration, [A]0, using the appropriate integrated rate law. To determine the reaction’s rate constant, k, we run a separate experiment using a standard solution of analyte. Alternatively, we can determine the analyte’s initial concentration by measuring [A]t for several standards containing known concentrations of analyte and constructing a calibration curve.
0/5000
จาก: -
เป็น: -
ผลลัพธ์ (ไทย) 1: [สำเนา]
คัดลอก!
13B: จลนพลศาสตร์เคมีสารบัญวิธีวิเคราะห์เร็วที่สุดตามจลนพลศาสตร์เคมี — ซึ่งเป็นครั้งแรกในช่วงปลายศตวรรษโดยเอาประโยชน์ของกิจกรรมตัวเร่งปฏิกิริยาของเอนไซม์ ในวิธีการทั่วไปของยุค เอนไซม์ถูกเพิ่มโซลูชันที่ประกอบด้วยพื้นผิวที่เหมาะสมและปฏิกิริยาของพวกเขาตรวจสอบในเวลาที่กำหนด กิจกรรมของเอนไซม์ที่ถูกกำหนด โดยการเปลี่ยนแปลงความเข้มข้นของพื้นผิว เอนไซม์นอกจากนี้ยังใช้สำหรับการวิเคราะห์เชิงปริมาณของไฮโดรเจนเปอร์ออกไซด์และคาร์โบไฮเดรต พัฒนาวิธีการเดิม ๆ เคมีอย่างต่อเนื่องในช่วงครึ่งแรกของศตวรรษที่ยี่สิบด้วยการแนะนำของ nonenzymatic สิ่งที่ส่งเสริมและตอบสนองต่อ noncatalyticแม้ มีความหลากหลายของวิธีการเดิม ๆ เคมี โดย 1960 ถูกไม่ร่วมใช้ จำกัดหลักการยอมรับกว้างขึ้นของพวกเขามีภูมิไวรับข้อผิดพลาดที่สำคัญจากตัวแปรที่ควบคุมไม่ดี หรือทาง — อุณหภูมิและ pH เป็นตัวอย่างที่สอง — และของ interferents ที่เปิดใช้งาน หรือยับยั้งปฏิกิริยาตัวเร่งปฏิกิริยา โดยไฟต์ ปรับปรุงเครื่องมือและวิธีการวิเคราะห์ข้อมูลชดเชยข้อจำกัดเหล่านี้ มั่นใจพัฒนาเพิ่มเติมเคมีวิธีเดิม ๆ ของ analysis.3ทฤษฎี 13B.1ทุกปฏิกิริยาเคมีที่เกิดขึ้นในอัตราที่จำกัด ทำให้ต้องเกิดวิธีเดิม ๆ เคมีวิเคราะห์ มีประสิทธิภาพ ไร ปฏิกิริยาเคมีต้องตรงตามเงื่อนไขทั้งสามจำเป็น: ต้องไม่มีเกิดปฏิกิริยาเร็วเกินไป หรือ ช้าเกินไป เราต้องรู้กฎหมายอัตราของปฏิกิริยา และเราต้องสามารถตรวจสอบการเปลี่ยนแปลงความเข้มข้นสำหรับพันธุ์น้อย ลองมาดูใกล้ชิดในแต่ละความต้องการเหล่านี้วัสดุในส่วนนี้สันนิษฐานบางคุ้นจลนพลศาสตร์เคมี ซึ่งเป็นส่วนหนึ่งของหลักสูตรทางเคมีทั่วไป ทบทวนอัตราปฏิกิริยา กฎหมายอัตรา และอัตรารวมกฎหมาย ดูวัสดุใน 17 ภาคผนวกอัตราปฏิกิริยาอัตราของปฏิกิริยาเคมีตัวอย่างรวดเร็วการเปลี่ยนแปลงความเข้มข้นของ reactants และผลิตภัณฑ์ในระหว่างปฏิกิริยา — ต้องเร็วพอที่เราสามารถทำการวิเคราะห์ในเวลาที่เหมาะสม แต่ยัง ช้าพอว่า ปฏิกิริยาไม่ถึงสมดุลในขณะ reagents จะผสม เป็นขีดจำกัดปฏิบัติ มันไม่ได้เพื่อศึกษาปฏิกิริยาที่ถึงสมดุลในหลายวินาทีโดยไม่ต้องการความช่วยเหลือของเครื่องมือพิเศษสำหรับผสม reactants รวดเร็ว เราจะกล่าวถึงตัวอย่างของเครื่องมือสำหรับการศึกษาปฏิกิริยากับจลนพลศาสตร์อย่างรวดเร็วในส่วนของ 13B.3กฎหมายอัตราความต้องการที่สองคือ เราต้องรู้กฎหมายอัตราของปฏิกิริยาคือสมการทางคณิตศาสตร์ที่อธิบายว่า ความเข้มข้นของ reagents มีผลต่ออัตราการ — สำหรับรอบระยะเวลาที่เราทำการวัด ตัวอย่าง คือกฎหมายอัตราสำหรับปฏิกิริยาที่เป็นลำดับแรกในความเข้มข้นของ analyte, A อัตรา =− d [A] / dt = k [A] 13.1โดยที่ k คือ ค่าคงอัตราของปฏิกิริยาเนื่องจากความเข้มข้นของ A ลดลงในระหว่างที่ปฏิกิริยา d [A] เป็นค่าลบ เครื่องหมายลบในสมการ 13.1 ทำให้อัตราเป็นบวก ถ้าเราเลือกตามผลิตภัณฑ์ P แล้ว d [P] เป็นบวกเนื่องจากความเข้มข้นของผลิตภัณฑ์ที่เพิ่มขึ้นตลอดปฏิกิริยา ในกรณีนี้ เราไม่ใส่เครื่องหมาย ดูสมการ 13.21 สำหรับตัวอย่างกฎหมายเป็นอัตราที่รวมมักจะเป็นแบบประโยชน์กฎหมายอัตราเนื่องจากเป็นฟังก์ชันของความเข้มข้นเริ่มต้นของ analyte ตัวอย่าง คือกฎหมายอัตรารวมสำหรับสมการ 13.1 ln [A] t = ln [A] 0 − kt 13.2หรือ [A] t = 0e−kt [A] 13.3ที่ 0 [A] คือ ความเข้มข้นเริ่มต้นของ analyte และ t [A] คือ ความเข้มข้นของ analyte ที่เวลา tอับ ปฏิกิริยาส่วนใหญ่น่าสนใจวิเคราะห์ไม่ทำตามกฎหมายเรื่องอัตรา พิจารณา เช่น ปฏิกิริยาต่อไปนี้ระหว่าง analyte, A และรีเอเจนต์ R เพื่อผลิตภัณฑ์เดียว P kfA + R ⇋ P kbที่ kf เป็นค่าคงอัตราการปฏิกิริยาไปข้างหน้า และ kb คือ ค่าคงอัตราสำหรับปฏิกิริยาย้อนกลับ ถ้าปฏิกิริยาไปข้างหน้า และย้อนกลับเกิดขึ้นเป็นขั้นตอนเดียว แล้วกฎหมายอัตราเป็น อัตรา = −d [A] / dt = kb − kf [R] [A] [P] 13.4ระยะแรก kf [R] [A] บัญชีสำหรับขาดทุนของ A จะทำปฏิกิริยากับ R ต้อง P และระยะที่สอง บัญชี kb [P] สำหรับการก่อตัวของ A เป็น P แปลงไป A และอาร์ถึงแม้ว่าเรารู้กฎหมายอัตราของปฏิกิริยา มีฟอร์มไม่รวมเรื่องที่เราสามารถใช้เพื่อกำหนดความเข้มข้นเริ่มต้นของ analyte เราสามารถทำสมการ 13.4 โดยจำกัดของเราวัดจุดเริ่มต้นของปฏิกิริยาเมื่อความเข้มข้นของผลิตภัณฑ์เป็นระยะ ภายใต้เงื่อนไขเหล่านี้ เราสามารถข้ามระยะที่สองในสมการ 13.4 ซึ่งช่วยให้ง่ายเพื่อ อัตรา = −d [A] / dt = kf [A] [R] 13.5กฎหมายรวมอัตราสำหรับสมการ 13.5 อย่างไรก็ตาม ได้ยังซับซ้อนเกินไปให้เป็นประโยชน์ analytically เราสามารถเพิ่มเติมง่ายจลนพลศาสตร์การ โดยระมัดระวังการปรับ conditions.4 ปฏิกิริยาเช่น เรามั่นใจจลนพลศาสตร์ pseudo-first-สั่งโดยมากเกินขนาดใหญ่จะให้ความเข้มข้นจะเป็นช่วงเวลาที่เรากำลังตรวจสอบปฏิกิริยา ภายใต้เงื่อนไขเหล่านี้ สมการ 13.5 ช่วยให้ง่าย อัตรา = −d [A] / dt = kf [A] [R] 0 k′ [A] = 13.6ที่ k′ = kf [R] 0กล่าวว่าปฏิกิริยา pseudo-first-ใบสั่งหมายความว่าปฏิกิริยาการทำงานของถ้าสั่งแรกใน A และศูนย์สั่งใน R แม้จลนพลศาสตร์ต้นมีมากขึ้น มีความซับซ้อน เราเรียก k ′ค่าคงอัตรา pseudo-first-สั่งมีกฎหมายอัตรารวมสำหรับสมการ 13.6 ln [A] t = ln [A] 0 − k′t 13.7หรือ [T A] = [A] 0e−k′t 13.8แม้อาจสามารถปรับปรุงเงื่อนไขเพื่อให้เราใช้ปฏิกิริยาภายใต้เงื่อนไข pseudo-zero-สั่งการ อัตรา = −d [A] / dt = kf [R] 0 [A] 0 = k′′ 13.9 [T A] = [A] 0 − k′′t 13.10ที่ k′′ = kf [A] 0 [R] 0กล่าวว่าปฏิกิริยาแบบ pseudo-zero-สั่งหมายความว่าปฏิกิริยาการทำงานของถ้าสั่งศูนย์ใน A และศูนย์สั่งใน R แม้จลนพลศาสตร์ต้นมีมากขึ้น มีความซับซ้อน เราโทร k ′′ค่าคงอัตรา pseudo-zero-สั่งสมการ 13.10 เป็นกฎหมายรวมอัตราสำหรับสมการ 13.9ตรวจสอบปฏิกิริยาความต้องการขั้นสุดท้ายคือการ ที่เราต้องการติดตามความก้าวหน้าของปฏิกิริยาตามการเปลี่ยนแปลงความเข้มข้นอย่างน้อยหนึ่งชนิดของ สายพันธุ์ที่เราเลือกที่จะตรวจสอบไม่ important.it ได้ analyte รีเอเจนต์ที่ปฏิกิริยา analyte หรือผลิตภัณฑ์ ตัวอย่าง เราสามารถกำหนดความเข้มข้นของฟอสเฟตในตัวอย่าง โดยแรกปฏิกิริยาก็มี Mo(VI) กับกรด molybdophosphoric 12.ฟอร์ม (12-แรง) H3PO4(aq) + 6Mo(VI)(aq) + 12-MPA(aq) → 9H+(aq) 13.11ถัดไป เราลด 12-แรงแบบ heteropolyphosphomolybdenum สีน้ำเงิน PMB อัตราการก่อตัวของ PMB วัด spectrophotometrically และเป็นสัดส่วนกับความเข้มข้นของแรง 12 ความเข้มข้นของแรง 12 เป็นสัดส่วนกับความเข้มข้นของ phosphate.5 เรายังสามารถทำปฏิกิริยา 13.11 spectrophotometrically โดยการตรวจสอบการก่อตัวของสีเหลือง 12-MPA.613B.2 ประเภทเคมีเดิม ๆ วิธีรูป 13.2 มีร่างหนึ่งเป็นประโยชน์สำหรับการจัดประเภทวิธีเดิม ๆ เคมีวิเคราะห์ วิธีแบ่งออกเป็นสองประเภทหลัก: วิธีการคำนวณโดยตรงและวิธีการปรับเส้นโค้ง ในวิธีการคำนวณโดยตรง เราคำนวณของ analyte เริ่มต้นความเข้มข้น, [A] 0 ใช้กฎหมายอัตราที่เหมาะสม ตัวอย่าง ถ้าปฏิกิริยาเป็นลำดับแรกใน analyte เราสามารถใช้สมการ 13.2 ตรวจเรามีค่า k, t และ t [A] [A] 0 มีวิธีการปรับเส้นโค้ง เราใช้ถดถอยเพื่อหาขนาดที่พอดีระหว่างข้อมูล — ตัวอย่าง, [A] t เป็นฟังก์ชันของเวลา – และแบบจำลองทางคณิตศาสตร์รู้จักกันสำหรับกฎหมายอัตราการ ถ้าปฏิกิริยาเป็นลำดับแรกใน analyte แล้วเราเหมาะสมการ 13.2 ข้อมูลใช้ k [A] 0 เป็นพารามิเตอร์ที่สามารถปรับ การจัดประเภทรูป 13.2 วิธีเดิม ๆ เคมีวิเคราะห์ที่ดัดแปลงจาก Pardue, H. L. "เดิม ๆ ด้านของเคมีวิเคราะห์ Anal ฉิม คตา 1989, 216, 69-107วิธีเป็นเวลาคำนวณโดยตรงคำนวณโดยตรงเป็นวิธีใช้แบบบูรณาการกฎหมายอัตรา ในจุดหนึ่งเวลาคงเป็นวิธีการ เช่น เรากำหนดความเข้มข้นของ analyte ที่เดียว และคำนวณของ analyte เริ่มต้นความเข้มข้น 0 [A] ใช้อัตราที่เหมาะสมรวมกฎหมาย กำหนดปฏิกิริยาที่อัตราคง k เราทำงานแยกจากการทดลองใช้สารละลายมาตรฐานของ analyte หรือ เราสามารถกำหนด analyte ความเข้มข้นเริ่มต้น โดย [A] t สำหรับมาตรฐานหลายวัดที่ประกอบด้วยความเข้มข้นรู้จักของ analyte และสร้างเส้นโค้งเทียบได้
การแปล กรุณารอสักครู่..
ผลลัพธ์ (ไทย) 2:[สำเนา]
คัดลอก!
13B: จลนพลศาสตร์เคมีสารบัญวิธีการวิเคราะห์ที่เก่าแก่ที่สุดบนพื้นฐานของจลนพลศาสตร์เคมีซึ่งปรากฏตัวครั้งแรกในช่วงปลายศตวรรษที่สิบเก้าใช้ประโยชน์จากการเร่งปฏิกิริยาของเอนไซม์ ในวิธีการทั่วไปในยุคนั้นเป็นเอนไซม์ถูกบันทึกอยู่ในวิธีการแก้ปัญหาที่มีพื้นผิวที่เหมาะสมและปฏิกิริยาของพวกเขาตรวจสอบเวลาที่กำหนด เอนไซม์ที่ถูกกำหนดโดยการเปลี่ยนแปลงในความเข้มข้นของสารตั้งต้นของ เอนไซม์ยังถูกนำมาใช้สำหรับการวิเคราะห์เชิงปริมาณของไฮโดรเจนเปอร์ออกไซด์และคาร์โบไฮเดรต การพัฒนาวิธีการเกี่ยวกับการเคลื่อนไหวทางเคมีอย่างต่อเนื่องในช่วงครึ่งแรกของศตวรรษที่ยี่สิบด้วยการเปิดตัวของตัวเร่งปฏิกิริยา nonenzymatic และปฏิกิริยา noncatalytic ได้. แม้จะมีความหลากหลายของวิธีการเกี่ยวกับการเคลื่อนไหวทางเคมีโดย 1960 ที่พวกเขาไม่ได้อยู่ในการใช้งานทั่วไป ข้อ จำกัด ที่สำคัญที่จะได้รับการยอมรับในวงกว้างของพวกเขาเป็นความไวต่อความผิดพลาดที่สำคัญจากที่ไม่สามารถควบคุมได้ไม่ดีหรือควบคุมตัวแปรอุณหภูมิและพีเอชเป็นสองตัวอย่างและการปรากฏตัวของ interferents ที่เปิดใช้งานหรือยับยั้งปฏิกิริยาตัวเร่งปฏิกิริยา โดยปี 1980 ในการปรับปรุงเครื่องมือและวิธีการชดเชยการวิเคราะห์ข้อมูลสำหรับข้อ จำกัด เหล่านี้เพื่อให้มั่นใจว่าการพัฒนาต่อไปวิธีการเกี่ยวกับการเคลื่อนไหวทางเคมีของ analysis.3 13B.1 ทฤษฎีและการปฏิบัติทุกปฏิกิริยาทางเคมีที่เกิดขึ้นในอัตราที่จำกัด ทำให้ผู้สมัครที่มีศักยภาพสำหรับ สารเคมีวิธีการเกี่ยวกับการเคลื่อนไหวของการวิเคราะห์ ที่จะมีประสิทธิภาพ แต่ปฏิกิริยาทางเคมีที่ต้องเป็นไปตามเงื่อนไขที่จำเป็นสาม: ปฏิกิริยาจะต้องไม่เกิดขึ้นเร็วเกินไปหรือช้าเกินไป เราจะต้องรู้เรื่องกฎหมายอัตราการเกิดปฏิกิริยาของ; และเราจะต้องสามารถตรวจสอบการเปลี่ยนแปลงในความเข้มข้นเป็นเวลาอย่างน้อยหนึ่งชนิด ลองมามองใกล้ที่แต่ละความต้องการเหล่านี้. วัสดุที่ใช้ในส่วนนี้ถือว่าคุ้นเคยกับจลนพลศาสตร์เคมีบางอย่างที่เป็นส่วนหนึ่งของหลักสูตรส่วนใหญ่ในวิชาเคมีทั่วไป สำหรับความคิดเห็นของอัตราการเกิดปฏิกิริยากฎหมายอัตราและกฎหมายอัตราการแบบบูรณาการเห็นวัสดุในภาคผนวก 17 อัตราการเกิดปฏิกิริยาอัตราการเกิดปฏิกิริยาเคมี-วิธีการอย่างรวดเร็วความเข้มข้นของสารตั้งต้นของผลิตภัณฑ์และการเปลี่ยนแปลงในระหว่างการเกิดปฏิกิริยา-ต้องรวดเร็วพอที่จะทำให้เราสามารถดำเนินการวิเคราะห์ในเวลาที่เหมาะสม แต่ยังช้าพอที่จะทำให้เกิดปฏิกิริยาไม่ถึงสมดุลในขณะที่สารเคมีที่มีการผสม ในฐานะที่เป็นข้อ จำกัด ในทางปฏิบัติมันไม่ง่ายที่จะศึกษาถึงปฏิกิริยาที่สมดุลภายในไม่กี่วินาทีโดยความช่วยเหลือของอุปกรณ์พิเศษสำหรับการอย่างรวดเร็วผสมสารตั้งต้น เราจะหารือสองตัวอย่างของการใช้เครื่องมือสำหรับการศึกษาปฏิกิริยากับจลนศาสตร์อย่างรวดเร็วในมาตรา 13B.3. อัตรากฎหมายต้องการที่สองคือการที่เราต้องรู้กฎหมายอัตราการเกิดปฏิกิริยาของคณิตศาสตร์สมการอธิบายว่าความเข้มข้นของสารเคมีส่งผลกระทบต่ออัตราในช่วงเวลาที่ในการที่เราจะทำให้การวัด ตัวอย่างเช่นกฎอัตราสำหรับปฏิกิริยาที่มีการสั่งซื้อครั้งแรกในความเข้มข้นของวิเคราะห์ที่เป็นอัตรา = - d [A] / dt = k [A] 13.1 ที่ k เป็นค่าคงที่อัตราการเกิดปฏิกิริยาของ. เพราะความเข้มข้นของ ลดลงในระหว่างการเกิดปฏิกิริยาที่ d [A] เป็นลบ เครื่องหมายลบ 13.1 ในสมการที่ทำให้อัตราการบวก ถ้าเราเลือกที่จะทำตามผลิตภัณฑ์ P แล้ว d [P] เป็นบวกเนื่องจากการเพิ่มขึ้นของความเข้มข้นของผลิตภัณฑ์ตลอดปฏิกิริยา ในกรณีนี้เราเอาเครื่องหมายลบ; 13.21 เห็นสมการเช่น. กฎหมายอัตราการแบบบูรณาการมักจะเป็นรูปแบบที่มีประโยชน์มากขึ้นอัตราของกฎหมายเพราะมันเป็นหน้าที่ของความเข้มข้นเริ่มต้นวิเคราะห์ฯ ยกตัวอย่างเช่นกฎอัตราบูรณาการสำหรับสม 13.1 เป็น LN [A] t = LN [A] 0 - kt 13.2 หรือ [A] t = [A] 0e-kt 13.3 ที่ [A] 0 ความเข้มข้นเริ่มต้นวิเคราะห์และ [ A] เสื้อคือความเข้มข้นของวิเคราะห์ที่เวลา t. แต่น่าเสียดายที่ส่วนใหญ่เกิดปฏิกิริยาที่สนใจการวิเคราะห์ไม่ปฏิบัติตามกฎหมายอัตราที่เรียบง่าย พิจารณาตัวอย่างเช่นปฏิกิริยาต่อไปนี้ระหว่างวิเคราะห์ที่ A, และสารที่ R ในรูปแบบผลิตภัณฑ์เดียว P kf A + R ⇋ P กิโลไบต์ที่ kf เป็นค่าคงที่อัตราการเกิดปฏิกิริยาไปข้างหน้าและกิโลเป็นอัตรา คงที่สำหรับปฏิกิริยาย้อนกลับ ถ้าเกิดปฏิกิริยาไปข้างหน้าและย้อนกลับเกิดขึ้นเป็นขั้นตอนเดียวแล้วกฎหมายอัตราอัตรา = -d [A] / dt = kf [A] [R] - กิโลไบต์ [P] 13.4 ในระยะแรก, kf [A] [R] บัญชีสำหรับการสูญเสียของที่มันทำปฏิกิริยากับ R ที่จะทำให้ P และระยะที่สองกิโลไบต์ [P] บัญชีการก่อตัวของเป็น P แปลงกลับไปและอาร์ถึงแม้ว่าเราจะรู้ว่ากฎหมายอัตราการเกิดปฏิกิริยาของไม่มีรูปแบบที่เรียบง่ายแบบบูรณาการที่เราสามารถใช้เพื่อตรวจสอบความเข้มข้นเริ่มต้นวิเคราะห์ของ เราสามารถลดความซับซ้อนของสม 13.4 โดยการ จำกัด การวัดของเราที่จะเป็นจุดเริ่มต้นของการเกิดปฏิกิริยาเมื่อความเข้มข้นของผลิตภัณฑ์เป็นสำคัญ ภายใต้เงื่อนไขเหล่านี้เราสามารถละเว้นระยะที่สองในสม 13.4 ซึ่งช่วยลดความยุ่งยากในการประเมิน= -d [A] / dt = kf [A] [R] 13.5 กฎหมายอัตราสมบูรณาการสำหรับ 13.5 แต่ยังคงมีความซับซ้อนเกินไปที่จะเป็น การวิเคราะห์ที่มีประโยชน์ เรายังสามารถลดความซับซ้อนจลนศาสตร์โดยระมัดระวังการปรับปฏิกิริยา conditions.4 ตัวอย่างเช่นเราสามารถมั่นใจได้ว่าจลนศาสตร์หลอกลำดับแรกโดยใช้ส่วนเกินมาก R เพื่อให้ความเข้มข้นยังคงเป็นหลักอย่างต่อเนื่องในช่วงเวลาที่เรามีการตรวจสอบการเกิดปฏิกิริยา ภายใต้เงื่อนไขเหล่าสม 13.5 ช่วยลดความยุ่งยากในการประเมิน= -d [A] / dt = kf [A] [R] 0 = k [A] 13.6 ที่ k 'kf = [R] 0. ที่จะบอกว่าเป็นปฏิกิริยาหลอก การสั่งซื้อครั้งแรกในหมายความว่าปฏิกิริยาจะทำงานเป็นถ้ามันเป็นครั้งแรกในการสั่งซื้อและการสั่งซื้อในศูนย์ R แม้ว่าจลนศาสตร์พื้นฐานที่มีความซับซ้อนมากขึ้น เราเรียก k 'หลอกลำดับแรกอัตราคงที่. กฎหมายบูรณาการสำหรับอัตรา 13.6 สมการมี LN [A] t = LN [A] 0 - k't 13.7 หรือ [A] t = [A] 0e-k' เสื้อ 13.8 แม้มันอาจจะเป็นไปได้ที่จะปรับสภาพเพื่อให้เราใช้ปฏิกิริยาภายใต้เงื่อนไขที่หลอกศูนย์การสั่งซื้อ. อัตรา = -d [A] / dt = kf [A] 0 [R] = 0 k '' 13.9 [ A] t = [A] 0 - 13.10 k''t ที่ k '' kf = [A] 0 [R] 0. ที่จะบอกว่าเป็นปฏิกิริยาหลอกศูนย์สั่งหมายความว่าปฏิกิริยาพฤติกรรมราวกับว่ามันเป็นศูนย์ ในการสั่งซื้อและการสั่งซื้อในศูนย์ R แม้ว่าจลนศาสตร์พื้นฐานที่มีความซับซ้อนมากขึ้น เราเรียก k '' หลอกศูนย์เพื่อคงอัตรา. สม 13.10 เป็นกฎหมายบูรณาการสำหรับอัตรา 13.9 สม. ตรวจสอบปฏิกิริยาความต้องการสุดท้ายคือการที่เราจะต้องสามารถตรวจสอบปฏิกิริยา ?? ของความคืบหน้าโดยต่อไปนี้การเปลี่ยนแปลง ความเข้มข้นเป็นเวลาอย่างน้อยหนึ่งในสายพันธุ์ของมัน ซึ่งสายพันธุ์ที่เราเลือกที่จะตรวจสอบไม่ได้ important.it สามารถวิเคราะห์ที่สารปฏิกิริยากับวิเคราะห์หรือผลิตภัณฑ์ ตัวอย่างเช่นเราสามารถตรวจสอบความเข้มข้นของฟอสเฟตในตัวอย่างเป็นครั้งแรกโดยทำปฏิกิริยากับโม (VI) ในรูปแบบกรด 12.molybdophosphoric (12 MPA). H3PO4 (AQ) + 6Mo (VI) (AQ) + → 12 MPA (AQ) + 9H + (AQ) 13.11 ต่อไปเราลด 12 MPA ในรูปแบบ heteropolyphosphomolybdenum สีฟ้า, PMB อัตราการก่อตัวของ PMB เป็นวัด spectrophotometrically และเป็นสัดส่วนกับความเข้มข้นของ 12 MPA ความเข้มข้นของ 12 MPA ในทางกลับกันเป็นสัดส่วนกับความเข้มข้นของ phosphate.5 นอกจากนี้เรายังสามารถทำตามปฏิกิริยา 13.11 spectrophotometrically โดยการตรวจสอบการก่อตัวของสีเหลืองสี 12 MPA.6 13B.2 การจัดประเภทของสารเคมีในการเคลื่อนไหววิธีการรูปที่13.2 ให้ หนึ่งในโครงการที่มีประโยชน์สำหรับการจำแนกวิธีการเกี่ยวกับการเคลื่อนไหวของการวิเคราะห์ทางเคมี วิธีการจะแบ่งออกเป็นสองประเภทหลัก: วิธีการโดยตรงและวิธีการคำนวณการปรับเส้นโค้ง ในวิธีการคำนวณโดยตรงเราจะคำนวณความเข้มข้นเริ่มต้นวิเคราะห์ของ [A] 0 โดยใช้กฎอัตราที่เหมาะสม ตัวอย่างเช่นถ้าเกิดปฏิกิริยาเป็นลำดับแรกในการวิเคราะห์เราสามารถใช้ 13.2 สมการเพื่อตรวจสอบ [A] 0 ถ้าเรามีค่า k, เสื้อและ [A] t ด้วยวิธีโค้งกระชับเราจะใช้การถดถอยที่จะหาแบบที่ดีที่สุดระหว่างตัวอย่างเช่นข้อมูลสำหรับ [A] t เป็นหน้าที่ของเวลาและแบบจำลองทางคณิตศาสตร์ที่รู้จักกันสำหรับกฎอัตรา หากเกิดปฏิกิริยาเป็นลำดับแรกในการวิเคราะห์แล้วเราพอดีสม 13.2 ข้อมูลโดยใช้ k และ [A] 0 เป็นค่าปรับ. รูปที่ 13.2 การจำแนกประเภทของวิธีการเกี่ยวกับการเคลื่อนไหวทางเคมีของการวิเคราะห์ที่ดัดแปลงมาจาก Pardue, HL "Kinetic ลักษณะของการวิเคราะห์เคมี "ก้น ฉิม Acta ปี 1989, 216, 69-107. โดยตรงวิธีการคำนวณ Integral คงใช้เวลาในการคำนวณโดยตรงวิธีการหนึ่งที่ใช้รูปแบบบูรณาการของกฎหมายอัตรา ในหนึ่งจุดคงเวลาวิธีหนึ่งเช่นเราตรวจสอบความเข้มข้นของวิเคราะห์ในเวลาเดียวและคำนวณความเข้มข้นเริ่มต้นวิเคราะห์ของ [A] 0, อัตราการใช้กฎหมายแบบบูรณาการที่เหมาะสม การตรวจสอบอย่างต่อเนื่องอัตราการเกิดปฏิกิริยาของ k เราใช้การทดสอบที่แยกจากกันโดยใช้วิธีการแก้ปัญหามาตรฐานของการวิเคราะห์ อีกวิธีหนึ่งที่เราสามารถตรวจสอบความเข้มข้นเริ่มต้นวิเคราะห์โดยการวัด [A] t สำหรับมาตรฐานที่มีความเข้มข้นหลายรู้จักวิเคราะห์และการสร้างเส้นโค้งการสอบเทียบ



















































การแปล กรุณารอสักครู่..
ผลลัพธ์ (ไทย) 3:[สำเนา]
คัดลอก!
13 : โต๊ะ

จลนศาสตร์เคมี เนื้อหาเก่าวิเคราะห์โดยวิธีเคมีจลนศาสตร์ที่แรกปรากฏในศตวรรษที่สิบเก้าปลายเอาประโยชน์จากฤทธิ์ของเอนไซม์ ในวิธีการทั่วไปในยุคนั้น เอนไซม์ที่ถูกเพิ่มลงในสารละลายที่มีพื้นผิวที่เหมาะสมและการตรวจสอบเป็นระยะเวลาคงที่กิจกรรมของเอนไซม์ที่ถูกกำหนดจากการเปลี่ยนแปลงของความเข้มข้นสารอาหาร . เอนไซม์ยังถูกใช้สำหรับการวิเคราะห์เชิงปริมาณของไฮโดรเจนเปอร์ออกไซด์และคาร์โบไฮเดรต การพัฒนาวิธีการทางเคมีอย่างต่อเนื่องในช่วงครึ่งแรกของศตวรรษที่ยี่สิบกับการแนะนำของตัวเร่งปฏิกิริยา nonenzymatic และปฏิกิริยา noncatalytic .
แม้จะมีความหลากหลายของวิธีทางเคมี โดย 1960 พวกเขาไม่ใช้ร่วมกัน ข้อจำกัดหลักของการยอมรับในวงกว้าง เป็นอย่างที่ควบคุมไม่ได้ หรือเกิดข้อผิดพลาดจากงานตัวแปรควบคุมอุณหภูมิและ pH เป็นสองตัวอย่างและการปรากฏตัวของศึกษาที่กระตุ้นหรือยับยั้งปฏิกิริยาการเร่งปฏิกิริยา โดย 1980การปรับปรุงในเครื่องมือวัดและการวิเคราะห์ข้อมูลวิธีการชดเชยข้อจำกัดเหล่านี้ เพื่อการพัฒนาต่อไปของจลนศาสตร์เคมี วิธีการของการวิเคราะห์ 3
13 1 ทฤษฎีและปฏิบัติ
ทุกปฏิกิริยาทางเคมีเกิดขึ้นในอัตราที่จำกัด ทำให้ผู้สมัครที่มีศักยภาพสำหรับจลนศาสตร์เคมี วิธีการของการวิเคราะห์ จะมีประสิทธิภาพ อย่างไรก็ตามปฏิกิริยาทางเคมีจะต้องพบกับสามเงื่อนไขที่จำเป็น : ปฏิกิริยาที่ไม่ต้องเกิดขึ้นเร็วเกินไป หรือช้าเกินไป เราต้องรู้กฎอัตราของปฏิกิริยา และเราต้องสามารถที่จะตรวจสอบการเปลี่ยนแปลงในความเข้มข้นอย่างน้อยหนึ่งชนิด ขอใช้เวลามองใกล้ที่แต่ละความต้องการเหล่านี้ .
วัสดุในส่วนนี้ถือว่ามีความคุ้นเคยกับจลนศาสตร์เคมีซึ่งเป็นส่วนหนึ่งของหลักสูตรส่วนใหญ่ในวิชาเคมีทั่วไป เพื่อทบทวนอัตรา อัตราของปฏิกิริยา กฎหมาย และกฎคะแนนรวม ดูวัสดุในภาคผนวก 17

อัตราปฏิกิริยาอัตราของปฏิกิริยาทางเคมีวิธีการอย่างรวดเร็วของปริมาณสารตั้งต้นและผลิตภัณฑ์เปลี่ยนระหว่างปฏิกิริยาต้องเร็วพอ เราสามารถทำการวิเคราะห์ได้ในเวลาที่เหมาะสมแต่ยังช้าพอที่ปฏิกิริยายังไม่ถึงจุดสมดุลในขณะที่สารเคมีจะผสม เป็นขีด จำกัด ในทางปฏิบัติ มันไม่ง่ายที่จะศึกษาถึงปฏิกิริยาที่สมดุลภายในไม่กี่วินาทีโดยไม่ต้องช่วยเหลือของอุปกรณ์พิเศษสำหรับอย่างรวดเร็วผสมก๊าซ เราจะหารือเกี่ยวกับสองตัวอย่างของเครื่องมือเพื่อศึกษาจลนพลศาสตร์ปฏิกิริยาอย่างรวดเร็วในมาตรา 13 3 .

กฎอัตราความต้องการที่สองคือเราต้องรู้ว่าของอัตราการเกิดปฏิกิริยากฎหมายสมการทาง คณิตศาสตร์ อธิบายว่า ความเข้มข้นของสารเคมีที่มีผลต่อคะแนนในช่วงเวลาที่เรากำลังวัด ตัวอย่างเช่นกฎหมายอัตราปฏิกิริยาที่เป็นลำดับแรกในความเข้มข้นของครู , ,
คะแนน = − D [ ] / dt = K [ a ] 13.1
โดยที่ k คือค่าคงที่อัตราของปฏิกิริยา .
เพราะความเข้มข้นของการลดลงในช่วงปฏิกิริยา , D [ ] เป็นค่าลบ เครื่องหมายลบในสมการ 13.1 ทำให้คะแนนบวก ถ้าเราเลือกที่จะติดตามผลิตภัณฑ์ , p , D [ P ] เป็นบวกเพราะผลิตภัณฑ์ความเข้มข้นเพิ่มขึ้นตลอดการ ในกรณีนี้เราละเว้นเครื่องหมายลบ ดูสมการ 13.21 ยกตัวอย่าง .
อัตราการบูรณาการกฎหมายมักจะเป็นรูปแบบที่มีประโยชน์เพิ่มเติมของกฎหมายเท่ากันเพราะมันเป็นฟังก์ชั่นของความเข้มข้นเริ่มต้นของครู . ตัวอย่างเช่นกฎหมายคะแนนรวมสมการ 13.1 เป็น
[ ] t = ln [ ] 0 − KT 13.2 หรือ
[ ]
t = [ ] เครื่อง− KT ที่ 13.3
[ ] 0 คือเป็นครูและความเข้มข้นเริ่มต้น [ ] t คือความเข้มข้นของครูที่ เวลา T .
ขออภัยปฏิกิริยาส่วนใหญ่สนใจวิเคราะห์ไม่ปฏิบัติตามกฎหมายคะแนนง่าย พิจารณาตัวอย่างต่อไปนี้ปฏิกิริยาระหว่างครู , และ , การกระทำ , R , รูปแบบผลิตภัณฑ์เดียว , p
KF
r p

⇋บางครั้งที่ KF เป็นค่าคงที่อัตราปฏิกิริยาไปข้างหน้า และบางครั้งเป็นค่าคงที่อัตราย้อนกลับปฏิกิริยา ถ้าปฏิกิริยาไปข้างหน้าและย้อนกลับเกิดขึ้นเป็นขั้นตอนเดียว แล้วกฎหมายอัตรา
คะแนน = − D [ ] / dt = KF [ ] [ R ] − KB [ P ] 13.4
ครั้งแรกในระยะ , KF [ ] [ R ] บัญชีสำหรับการสูญเสียของมันมีปฏิกิริยากับ R ให้ P และระยะที่สอง KB [ P ] บัญชีสำหรับการก่อตัวของ แปลงกลับไปเป็น P และ R .
ถึงแม้ว่าเรารู้กฎหมายอัตราของปฏิกิริยา ไม่มีแบบง่ายๆแบบที่เราสามารถใช้เพื่อตรวจสอบความเข้มข้นของครู . เราสามารถลดความซับซ้อนของสมการ 134 โดยการวัดของเราเพื่อเริ่มต้นปฏิกิริยาเมื่อความเข้มข้นของผลิตภัณฑ์ที่เป็นเล็กน้อย ภายใต้เงื่อนไขเหล่านี้เราสามารถละเว้นระยะที่สองในสมการ 13.4 ซึ่งช่วยลดอัตรา = − d [

] / dt = KF [ ] [ R ] 13.5
รวมคะแนนกฎหมายสำหรับสมการการลงทุน อย่างไรก็ตามยังคงซับซ้อนเกินไปที่จะเป็นประโยชน์ในการวิเคราะห์ .เราสามารถลดความซับซ้อนของจลนศาสตร์โดยรอบคอบปรับเงื่อนไขปฏิกิริยา 4 ตัวอย่าง เราสามารถมั่นใจได้ว่าลำดับแรกหลอกจลนพลศาสตร์โดยใช้ส่วนเกินขนาดใหญ่ของ R นั่นสมาธิยังคงเป็นหลักตลอดช่วงเวลาที่เรากำลังตรวจสอบปฏิกิริยา ภายใต้เงื่อนไขเหล่านี้สมการ 13.5 ง่าย

คะแนน = − D [ ] / dt = KF [ ] [ R ] 0 = Kitchen Stories [ ] 1
ที่ Kitchen Stories = KF [ R ]
0ว่าปฏิกิริยาจะสั่งซื้อครั้งแรกเทียมในหมายความว่าการประพฤติตัวเหมือนเป็นลำดับแรกในศูนย์และสั่ง R แม้ว่าต้นแบบจลนศาสตร์ที่ซับซ้อนมากขึ้น เราเรียก Kitchen Stories เทียมแรกสั่งแบบอัตราคงที่ สมการอัตรา

เนื่องจากเป็นกฎหมายที่ [ ] T = ln [ ] 0 − Kitchen Stories T 13.7
หรือ
[ ] T = [ ] เครื่อง− Kitchen Stories ตอน
tมันอาจเป็นไปได้ที่จะปรับสภาพเพื่อให้เราใช้ปฏิกิริยาภายใต้สภาวะศูนย์เพื่อหลอก
คะแนน = − D [ ] / dt = KF [ ] 0 [ ] 0 r = k ′′ 13.9
[ ] T = [ − ] 0 K ′′ T
′′ 13.10 ที่เค = KF [ ] 0 [ ] 0 r .
กล่าวว่า ปฏิกิริยาที่เป็นหมายถึงศูนย์เพื่อหลอกว่าปฏิกิริยาทำตัวราวกับว่ามันเป็นคำสั่งในศูนย์และศูนย์เพื่อ R แม้ว่าต้นแบบจลนศาสตร์ที่ซับซ้อนมากขึ้นเราเรียก K ′′เทียมศูนย์สั่งอัตราคงที่ สมการ 13.10
เป็นกฎหมายแบบบูรณาการสำหรับสมการอัตรา 13.9 .

ติดตามปฏิกิริยาความต้องการสุดท้ายคือ เราต้องสามารถตรวจสอบความคืบหน้าปฏิกิริยา ? โดยต่อไปนี้การเปลี่ยนแปลงความเข้มข้นอย่างน้อยหนึ่งชนิดของ ชนิดที่เราเลือกที่จะตรวจสอบไม่สามารถเป็นครู important.it ,การกระทำโต้ตอบกับครู หรือผลิตภัณฑ์ ตัวอย่างเช่นเราสามารถกำหนดความเข้มข้นของฟอสเฟตในตัวอย่างแรกโดยปฏิกิริยากับโม ( 6 ) รูปแบบ 12.molybdophosphoric acid ( 12-mpa )
6mo H3PO4 ( AQ ) ( 6 ) ( AQ ) → keyboard - key - name 12-mpa ( AQ ) 9H ( AQ ) 13.11
ต่อไป เราลด 12-mpa ฟอร์ม heteropolyphosphomolybdenum สีฟ้า พีเ มบี . อัตราของการสร้างวัดนี้พีเ มบี ,และมีสัดส่วนความเข้มข้นของ 12-mpa . ความเข้มข้นของ 12-mpa จะเป็นสัดส่วนกับปริมาณฟอสเฟต 5 เรายังสามารถติดตามปฏิกิริยา 13.11 นี้ติดตามการก่อตัวของสีเหลือง 12-mpa 6
13 2 หมวดหมู่จลนศาสตร์เคมีวิธีการ
รูป 13.2 ให้ประโยชน์ของการจำแนกจลนศาสตร์เคมีวิธีการของการวิเคราะห์วิธีการแบ่งออกเป็นสองประเภทหลัก : โดยวิธีการและวิธีการคำนวณเส้นโค้งที่เหมาะสม ในการคำนวณโดยวิธีของครูเราคำนวณความเข้มข้นเริ่มต้น [ ] 0 , การใช้กฎหมายในอัตราที่เหมาะสม ตัวอย่างเช่น ถ้าปฏิกิริยาเป็นลำดับแรกในครู เราสามารถใช้สมการ 13.2 ระบุ [ ] 0 ถ้าเรามีค่า K , T [ ] T และมีเส้นโค้งที่เหมาะสมวิธีการเราใช้สมการถดถอยเพื่อหาที่ดีที่สุดพอดีกับข้อมูลตัวอย่างเช่น [ t ] เป็นฟังก์ชันของเวลา และรู้จักแบบจำลองทางคณิตศาสตร์สำหรับกฎอัตรา ถ้าปฏิกิริยาเป็นลำดับแรกในครู แล้วเราใส่สมการ 13.2 ให้ข้อมูลโดยใช้ K [ ] 0 เป็นพารามิเตอร์ที่สามารถปรับ

รูป 13.2 หมวดหมู่ของจลนศาสตร์เคมี วิธีการของการวิเคราะห์ดัดแปลงจาก พาร์ดูว์ , H . L ." ทางด้านเคมีวิเคราะห์ , ทวารหนัก ชิม ACTA 1989 , 216 , 69 – 107 .
การคำนวณโดยตรงแก้ไขเวลาเป็นวิธีโดยตรงและวิธีใช้
การคำนวณรวมรูปแบบของกฎหมายต่อไป ในจุดหนึ่งกำหนดเวลาหนึ่งวิธี ตัวอย่างเช่น เรากำหนดความเข้มข้นของครูในเวลาเดียวและคำนวณความเข้มข้นของครู [ ] 0การใช้กฎหมายที่เหมาะสมรวม อัตรา เพื่อกำหนดอัตราคงที่ K ของปฏิกิริยา เราวิ่งทดลองแยกการใช้โซลูชั่นมาตรฐานของครู . อีกวิธีหนึ่งคือ เราสามารถกำหนดความเข้มข้นของครูโดยการวัด [ ] T หลายมาตรฐานที่มีความเข้มข้นของครูที่รู้จักและสร้างเป็นรูปโค้ง .
การแปล กรุณารอสักครู่..
 
ภาษาอื่น ๆ
การสนับสนุนเครื่องมือแปลภาษา: กรีก, กันนาดา, กาลิเชียน, คลิงออน, คอร์สิกา, คาซัค, คาตาลัน, คินยารวันดา, คีร์กิซ, คุชราต, จอร์เจีย, จีน, จีนดั้งเดิม, ชวา, ชิเชวา, ซามัว, ซีบัวโน, ซุนดา, ซูลู, ญี่ปุ่น, ดัตช์, ตรวจหาภาษา, ตุรกี, ทมิฬ, ทาจิก, ทาทาร์, นอร์เวย์, บอสเนีย, บัลแกเรีย, บาสก์, ปัญจาป, ฝรั่งเศส, พาชตู, ฟริเชียน, ฟินแลนด์, ฟิลิปปินส์, ภาษาอินโดนีเซี, มองโกเลีย, มัลทีส, มาซีโดเนีย, มาราฐี, มาลากาซี, มาลายาลัม, มาเลย์, ม้ง, ยิดดิช, ยูเครน, รัสเซีย, ละติน, ลักเซมเบิร์ก, ลัตเวีย, ลาว, ลิทัวเนีย, สวาฮิลี, สวีเดน, สิงหล, สินธี, สเปน, สโลวัก, สโลวีเนีย, อังกฤษ, อัมฮาริก, อาร์เซอร์ไบจัน, อาร์เมเนีย, อาหรับ, อิกโบ, อิตาลี, อุยกูร์, อุสเบกิสถาน, อูรดู, ฮังการี, ฮัวซา, ฮาวาย, ฮินดี, ฮีบรู, เกลิกสกอต, เกาหลี, เขมร, เคิร์ด, เช็ก, เซอร์เบียน, เซโซโท, เดนมาร์ก, เตลูกู, เติร์กเมน, เนปาล, เบงกอล, เบลารุส, เปอร์เซีย, เมารี, เมียนมา (พม่า), เยอรมัน, เวลส์, เวียดนาม, เอสเปอแรนโต, เอสโทเนีย, เฮติครีโอล, แอฟริกา, แอลเบเนีย, โคซา, โครเอเชีย, โชนา, โซมาลี, โปรตุเกส, โปแลนด์, โยรูบา, โรมาเนีย, โอเดีย (โอริยา), ไทย, ไอซ์แลนด์, ไอร์แลนด์, การแปลภาษา.

Copyright ©2024 I Love Translation. All reserved.

E-mail: