As the combustion flue gas exits the boiler it is routed through a rotating flat basket of metal mesh which picks up heat and returns it to incoming fresh air as the basket rotates, This is called the air preheater. The gas exiting the boiler is laden with fly ash, which are tiny spherical ash particles. The flue gas contains nitrogen along with combustion products carbon dioxide, sulfur dioxide, and nitrogen oxides. The fly ash is removed by fabric bag filters or electrostatic precipitators. Once removed, the fly ash byproduct can sometimes be used in the manufacturing of concrete. This cleaning up of flue gases, however, only occurs in plants that are fitted with the appropriate technology. Still, the majority of coal-fired power plants in the world do not have these facilities.[citation needed] Legislation in Europe has been efficient to reduce flue gas pollution. Japan has been using flue gas cleaning technology for over 30 years and the US has been doing the same for over 25 years. China is now beginning to grapple with the pollution caused by coal-fired power plants.
Where required by law, the sulfur and nitrogen oxide pollutants are removed by stack gas scrubbers which use a pulverized limestone or other alkaline wet slurry to remove those pollutants from the exit stack gas. Other devices use catalysts to remove Nitrous Oxide compounds from the flue gas stream. The gas travelling up the flue gas stack may by this time have dropped to about 50 °C (120 °F). A typical flue gas stack may be 150–180 metres (490–590 ft) tall to disperse the remaining flue gas components in the atmosphere. The tallest flue gas stack in the world is 419.7 metres (1,377 ft) tall at the GRES-2 power plant in Ekibastuz, Kazakhstan.
In the United States and a number of other countries, atmospheric dispersion modeling[14] studies are required to determine the flue gas stack height needed to comply with the local air pollution regulations. The United States also requires the height of a flue gas stack to comply with what is known as the "Good Engineering Practice (GEP)" stack height.[15][16] In the case of existing flue gas stacks that exceed the GEP stack height, any air pollution dispersion modeling studies for such stacks must use the GEP stack height rather than the actual stack height.