was the addition of ZVI. This may explain the different microbialcommunities in the reactors, which we discuss in Section 3.4.
Table 1 gives the settling velocities of aerobic granules in R1 andR2 as 47.4 ± 4.86 m/h (R1) and 56.8 ± 3.4 m/h, respectively (n = 3).The settling velocity of aerobic granules in R2 was significantlyhigher than that in R1 (p < 0.05). The result was similar to that forthe SVI of aerobic granules in the two reactors. Other importantparameters of the physical characteristics of granules, such as spe-cific gravity, integrity coefficient, and moisture content, were betterin R2 than in R1. It is thus concluded that ZVI enhances the physicalcharacteristics of aerobic granules.In this research, ferrous iron ions enhance cell aggregation.Because of the reduction reaction of ZVI (Fe0− 2e–= Fe2+), the Fe2+concentration in R2 had a range 8–17 mg L−1during the study.According to DLVO theory, divalent metal ions reduce electricrepulsion and facilitate cell-to-cell interaction between bacte-ria. Fe2+dissolved from ZVI intensifies microbial agglomerationthrough charge neutralization and double-layer compression. Thus,the Fe2+dissolution from ZVI reduced the start-up time of aerobicgranulation.
3.3. EPS content and EEM spectra of EPSs
EPSs are metabolic products that accumulate on the surfacesof bacterial cells. EPSs play a key role in the process of aerobicgranulation [30]. They are mainly composed of polysaccharides,protein, DNA, and humic acid substances that surround cells andcreate a matrix [31]. The EPS contents in R1 (in 1 g SS) on day 85were 29.8 ± 1.7 mg PN, 47.9 ± 4.6 mg humic acid, and 19.6 ± 2.2 mgpolysaccharides (n = 3). The EPS content of each gram of the aero-bic granules in R2 (in 1 g SS) on day 85 increased to 36.7 ± 2.5 mgprotein, 50.4 ± 5.1 mg humic acid, and 21.7 ± 2.6 mg polysaccha-rides (n = 3). Compared with the case for R1, the production yieldof protein was significantly greater in R2 (p < 0.05). The increase
คือ นอกจาก zvi . นี้อาจอธิบาย microbialcommunities แตกต่างกันในถังปฏิกรณ์ ซึ่งเราได้กล่าวถึงในมาตรา 3.4 .ตารางที่ 1 ให้ตกตะกอน ความเร็วของเม็ด andr2 เป็นแอโรบิกใน R1 47.4 ± 4.86 M / H ( , 1 ) ) และร้อยละ± 3.4 m / h ตามลำดับ ( n = 3 ) โดยความเร็วในการตกตะกอนของเม็ดแอโรบิกใน R2 สูงกว่าใน R1 ( P < 0.05 ) ผลที่ได้คือคล้ายกับว่าสำหรับ SVI ของแอโรบิก 2 เม็ดในถังปฏิกรณ์ การคำนึงถึงตัวแปรที่สำคัญอื่น ๆของลักษณะทางกายภาพของแกรนูล , เช่น เอสพี cific แรงโน้มถ่วง ค่าสัมประสิทธิ์ความสมบูรณ์และความชื้นมีมากกว่าใน betterin R2 R1 . จึงสรุปได้ว่า zvi ช่วยเพิ่มลักษณะทางกายภาพของแกรนูลแอโรบิค ในการวิจัยนี้ เฟอร์รัสไอออนเหล็กเพิ่มเซลล์รวม เนื่องจากการลดปฏิกิริยาของ zvi ( fe0 − 2 = fe2 ( + ) , fe2 + R2 มีความเข้มข้นในช่วง 8 – 17 mg L − 1during การศึกษา ตามทฤษฎี DLVO ไอออนโลหะขนาดลด electricrepulsion และความสะดวกในการปฏิสัมพันธ์ระหว่างเซลล์เซลล์แบคทีเรีย . fe2 + ละลายจาก zvi intensifies จุลินทรีย์ agglomerationthrough ค่าใช้จ่ายและสร้างการบีบอัด . ดังนั้น fe2 + การสลายตัวจาก zvi ลดเวลาเริ่มต้นขึ้นของ aerobicgranulation .3.3 . เนื้อหาและ eem สเปกตรัม EPSS EPSEPSS จะสลายผลิตภัณฑ์ที่สะสมบน surfacesof แบคทีเรียเซลล์ EPSS มีบทบาทสำคัญในกระบวนการของ aerobicgranulation [ 30 ] พวกเขาส่วนใหญ่จะประกอบด้วยโพลีแซคคาไรด์ โปรตีน ดีเอ็นเอ และกรดฮิวมิกสสารที่ล้อมรอบเซลล์ andcreate เมทริกซ์ [ 31 ] EPS เนื้อหา R1 ( ใน 1 กรัม SS ) ในวัน 85were 29.8 ± 1.7 มิลลิกรัม PN , 47.9 ± 4.6 มิลลิกรัม กรดฮิวมิค และ 19.6 ± 2.2 mgpolysaccharides ( n = 3 ) เนื้อหา EPS ของแต่ละกรัมของแอโรบิก แกรนูลใน R2 ( ใน 1 กรัม SS ) ในวัน 85 เพิ่มขึ้นเป็น 36.7 ± 2.5 mgprotein 50.4 , ± 5.1 มิลลิกรัม กรดฮิวมิค และ± 2.6 มิลลิกรัม และ polysaccha ขี่ ( n = 3 ) เมื่อเทียบกับกรณีของ R1 , อัตราการผลิตโปรตีนมากขึ้นใน R2 อย่างมีนัยสำคัญทางสถิติ ( P < 0.05 ) เพิ่ม
การแปล กรุณารอสักครู่..