ก๊าซเรือนกระจก[แก้]ดูบทความหลักที่: ก๊าซเรือนกระจกกลศาสตร์ควอนตัม เป็น การแปล - ก๊าซเรือนกระจก[แก้]ดูบทความหลักที่: ก๊าซเรือนกระจกกลศาสตร์ควอนตัม เป็น ไทย วิธีการพูด

ก๊าซเรือนกระจก[แก้]ดูบทความหลักที่:

ก๊าซเรือนกระจก[แก้]
ดูบทความหลักที่: ก๊าซเรือนกระจก
กลศาสตร์ควอนตัม เป็นวิชาที่ให้พื้นฐานสำหรับใช้คำนวณปฏิสัมพันธ์ระหว่างโมเลกุลและการแผ่กระจายรังสี ปฏิสัมพันธ์เกือบทั้งหมดนี้เกิดขึ้นเมื่อความถี่ของการแผ่กระจายรังสีที่เทียบได้กับเส้นสเปกตรัม (spectral lines) ของโมเลกุลซึ่งกำหนดโดยโหมดของการสั่นสะเทือนและการหมุนควงของโมเลกุล (การกระตุ้นทางอีเลกทรอนิกส์โดยทั่วไปใช้ไม่ได้กับการแผ่กระจายรังสีอินฟราเรดเนื่องจากความต้องการพลังงานในปริมาณที่มากกว่าที่จะใช้กับโฟตอนอินฟราเรด)

ความกว้างของเส้นสเปกตรัมเป็นองค์ประกอบสำคัญที่จะช่วยให้เกิดความเข้าใจถึงความสำคัญของการดูดกลืนการแผ่รังสี ความกว้างของสเปกตรัมในบรรยากาศโดยทั่วไปกำหนดด้วย “การแผ่กว้างของแรงดัน” ซึ่งก็คือการบิดเบี้ยวของสเปกตรัมเนื่องจากการประทะกับโมเลกุลอื่น การดูดกลืนรังสีอินฟราเรดเกือบทั้งหมดในบรรยากาศอาจนึกเปรียบเทียบได้ว่าป็นการชนกันระหว่างสองโมเลกุล การดูดกลืนที่เกิดจากโฟตอนทำปฏิกิริยากับโมเลกุลโดดมีขนาดเล็กมากๆ ปัญหาที่เกิดจากการณ์ลักษณะทั้งสามนี้คือ โฟตอน 1 ตัวและโมเลกุล 2 ตัวดังกล่าวสร้างความท้าทายโดยตรงที่ให้น่าสนใจมากขึ้นในเชิงของการคำนวณทางกลศาสตร์ควอนตัม การวัดสเปกตรัม (spectroscopic measurements) อย่างระมัดระวังในห้องทดลองให้ผลการคำนวณการถ่ายโอนการแผ่รังสีในการศึกษาบรรยากาศได้น่าเชื่อถือมากกว่าการใช้การคำนวณเชิงกลศาสตร์ควอนตัมแบบเก่า

โมเลกุล/อะตอมที่เป็นองค์ประกอบใหญ่ของบรรยากาศ ซึ่งได้แก่ออกซิเจน (O2) , ไนโตรเจน (N2) และ อาร์กอน (Ar) ไม่ทำปฏิกิริยากับรังสีอินฟราเรดมากนักขณะที่โมเลกุลของออกซิเจนและไนโตรเจนสามารถสั่นตัวได้เนื่องจากความสมดุลในตัว การสั่นตัวจึงไม่เกิดการแยกตัวเชิงภาวะชั่วครู่ของประจุไฟฟ้า (transient charge separation) การขาดความเป็น “ขั้วคู่” ของภาวะชั่วครู่ดังกล่าวจึงไม่มีทั้งการดูดกลืนเข้าและการปล่อยรังสีอินฟราเรดออก ในบรรยากาศของโลกก๊าซที่ทำหน้าที่หลักในการดูดกลืนอินฟราเรดมากที่สุดคือไอน้ำ คาร์บอนไดออกไซด์และโอโซน (O3) นอกจากนี้ โมเลกุลอย่างเดียวกันก็ยังเป็นกลุ่มโมเลกุลหลักในการปล่อยอินฟราเรด CO2 และ O3 มีลักษณะการสั่นของโมเลกุลแบบยวบยาบซึ่งเมื่ออยู่ในภาวะที่เป็นหน่วยเล็กสุด (quantum state) มันจะถูกกระตุ้นจากการชนของพลังงานที่เข้าปะทะกับบรรยากาศของโลก ตัวอย่างเช่น คาร์บอนไดออกไซด์ซึ่งเป็นโมเลกุลเป็นแบบเกาะกันตามยาวแต่มีรูปแบบการสั่นที่สำคัญคือการแอ่นตัวของโมเลกุลที่คาร์บอนไดออกไซด์ที่อยู่ตรงกลางเอนไปข้างหนึ่งและออกซิเจนแอ่นไปอีกข้างหนึ่งทำให้เกิดประจุไฟฟ้าแยกตัวออกมาเป็น “ขั้วคู่” (dipole moment) ชั่วขณะหนึ่งซึ่งทำให้โมเลกุลของคาร์บอนไดออกไซด์ดูดกลืนรังสีอินฟราเรดไว้ได้ การปะทะทำให้เกิดการถ่ายโอนพลังงานไปทำให้ก๊าซที่อยู่รอบๆ ร้อนขึ้น หรืออีกนัยหนึ่งก็คือโมเลกุลของ CO2 ถูกสั่นโดยการปะทะนั่นเอง ประมาณร้อยละ 5 ของโมเลกุล CO2 ถูกสั่นโดยที่อุณหภูมิของห้องและปริมาณร้อยละ 5 นี้เองที่เปล่งรังสีออกมา การเกิดที่สำคัญของปรากฏการณ์เรือนกระจกจึงเนื่องมาจากการปรากฏอยู่ของคาร์บอนไดออกไซด์ที่สั่นไหวง่ายเมื่อถูกกระตุ้นโดยอินฟราเรด CO2

ยังมีรูปแบบอื่นอีก 2 รูปแบบ ได้แก่การแอ่นตัวที่สมดุลไม่เปล่งรังสีกับการแอ่นตัวที่ไม่สมดุลที่ทำให้เกิดความถี่ในการสั่นสูงเกินที่จะถูกกระตุ้นได้ด้วยการปะทะจากความร้อนของบรรยากาศได้แม้มันจะยังทำหน้าที่ดูดกลืนอินฟราเรดได้บ้างก็ตาม รูปแบบการสั่นตัวของโมเลกุลของน้ำอยู่อัตราที่สูงเกินที่จะแผ่รังสีออกมาได้อย่างมีผล แต่มันยังสามารถดูดกลืนรังสอินฟราเรดที่มีความถี่สูงได้ ไอน้ำมีรูปโมเลกุลแอ่น มีขั้วคู่ที่ถาวร (ปลายของอะตอมออกซิเจนมีอีเลกตรอนมากและอะตอมของไฮโดรเจนมีน้อย) ซึ่งหมายความว่าแสงอินฟราเรดสามารถเปล่งออกและดูดกลืนได้ในระหว่างช่วงต่อของการหมุนตัวและการหมุนตัวก็เกิดได้จากการชนระหว่างการถ่ายโอนพลังงาน เมฆก็นับเป็นตัวดูดกลืนรังสีอินฟราเรดที่สำคัญ ดังนั้น น้ำจึงมีปรากฏการณ์เชิงอเนกต่อการแผ่รังสีอินฟราเรดผ่านช่วงการเป็นไอและช่วงการกลั่นตัว ตัวดูดกลืนที่สำคัญอื่นๆ รวมถึงก๊าซมีเทน ไนตรัสออกไซด์และคลอโรฟลูโอโรคาร์บอน

การโต้เถียงเกี่ยวกับความสำคัญในความสัมพันธ์ของตัวดูดกลืนรังสีอินฟราเรดชนิดต่างๆ ยังมีความสับสนที่เนื่องมาจากการทับซ้อนกันระหว่างเส้นสเปกตรัมที่เกิดจากก๊าซต่างชนิดที่ถ่างออกเนื่องจากแรงกดดันที่กว้างขึ้น ซึ่งมีผลทำให้การดูดกลืนของก๊าซชนิดหนึ่งไม่อาจเป็นอิสระจากก๊าซอื่นที่มีร่วมอยู่ในขณะนั้นได้ ช่องทางที่อาจทำได้วิธีหนึ่งคือการแยกเอาก๊าซดูดกลืนที่ต้องการวัดออก ปล่อยก๊าซดูดกลืนอื่นๆ ไว้และคงอุณหภูมิไว้ตามเดิมแล้วจึงวัดรังสีอินฟราเรดที่หนีออกสู่ห้วงอวกาศ ค่าที่ลดลงของการดูดกลืนรังสีอินฟราเรดที่วัดได้จึงกลายเป็นตัวสำคัญขององค์ประกอบ และเพื่อให้แม่นยำขึ้น การบ่งชี้ปรากฏการณ์เรือนกระจกให้ชัดเจนว่ามีความแตกต่างกันระหว่างการแผ่รังสอินฟราเรดจากผิวโลกสู่ห้วงอวกาศที่ปราศจากบรรยากาศ กับการแผ่รังสีอินฟราเรดที่หนีออกสู่ห้วงอวกาศตามที่เกิดขึ้นจริง จากนั้นจึงคำนวณอัตราร้อยละของการลดลงของปรากฏการณ์เรือนกระจกเมื่อส่วนประกอบ (constituent) ถูกแยกออกไป ตารางข้างล่างนี้คือผลการคำนวณโดยใช้วิธีนี้ ซึ่งได้ใช้แบบจำลองมิติเดี่ยวของบรรยากาศ การใช้แบบจำลอง 3 มิติที่นำมาใช้คำนวณเมื่อเร็วๆ นี้ได้ผลออกมาใกล้เคียงกัน
0/5000
จาก: -
เป็น: -
ผลลัพธ์ (ไทย) 1: [สำเนา]
คัดลอก!
[แก้] ก๊าซเรือนกระจกดูบทความหลักที่: ก๊าซเรือนกระจกกลศาสตร์ควอนตัมเป็นวิชาที่ให้พื้นฐานสำหรับใช้คำนวณปฏิสัมพันธ์ระหว่างโมเลกุลและการแผ่กระจายรังสีปฏิสัมพันธ์เกือบทั้งหมดนี้เกิดขึ้นเมื่อความถี่ของการแผ่กระจายรังสีที่เทียบได้กับเส้นสเปกตรัม (เส้นสเปกตรัม) ของโมเลกุลซึ่งกำหนดโดยโหมดของการสั่นสะเทือนและการหมุนควงของโมเลกุล (การกระตุ้นทางอีเลกทรอนิกส์โดยทั่วไปใช้ไม่ได้กับการแผ่กระจายรังสีอินฟราเรดเนื่องจากความต้องการพลังงานในปริมาณที่มากกว่าที่จะใช้กับโฟตอนอินฟราเรด)ซึ่งก็คือการบิดเบี้ยวของสเปกตรัมเนื่องจากการประทะกับโมเลกุลอื่นความกว้างของเส้นสเปกตรัมเป็นองค์ประกอบสำคัญที่จะช่วยให้เกิดความเข้าใจถึงความสำคัญของการดูดกลืนการแผ่รังสีความกว้างของสเปกตรัมในบรรยากาศโดยทั่วไปกำหนดด้วย "การแผ่กว้างของแรงดัน"การดูดกลืนรังสีอินฟราเรดเกือบทั้งหมดในบรรยากาศอาจนึกเปรียบเทียบได้ว่าป็นการชนกันระหว่างสองโมเลกุลการดูดกลืนที่เกิดจากโฟตอนทำปฏิกิริยากับโมเลกุลโดดมีขนาดเล็กมาก ๆ ปัญหาที่เกิดจากการณ์ลักษณะทั้งสามนี้คือโฟตอน 1 ตัวและโมเลกุล 2 ตัวดังกล่าวสร้างความท้าทายโดยตรงที่ให้น่าสนใจมากขึ้นในเชิงของการคำนวณทางกลศาสตร์ควอนตัมการวัดสเปกตรัม (วัดด้าน) อย่างระมัดระวังในห้องทดลองให้ผลการคำนวณการถ่ายโอนการแผ่รังสีในการศึกษาบรรยากาศได้น่าเชื่อถือมากกว่าการใช้การคำนวณเชิงกลศาสตร์ควอนตัมแบบเก่าโมเลกุล/อะตอมที่เป็นองค์ประกอบใหญ่ของบรรยากาศซึ่งได้แก่ออกซิเจน (O2), ไนโตรเจน (N2) และอาร์กอน (Ar) ไม่ทำปฏิกิริยากับรังสีอินฟราเรดมากนักขณะที่โมเลกุลของออกซิเจนและไนโตรเจนสามารถสั่นตัวได้เนื่องจากความสมดุลในตัวการสั่นตัวจึงไม่เกิดการแยกตัวเชิงภาวะชั่วครู่ของประจุไฟฟ้า (แยกค่าแบบฉับพลัน) การขาดความเป็น "ขั้วคู่" ของภาวะชั่วครู่ดังกล่าวจึงไม่มีทั้งการดูดกลืนเข้าและการปล่อยรังสีอินฟราเรดออกในบรรยากาศของโลกก๊าซที่ทำหน้าที่หลักในการดูดกลืนอินฟราเรดมากที่สุดคือไอน้ำคาร์บอนไดออกไซด์และโอโซน (O3) นอกจากนี้โมเลกุลอย่างเดียวกันก็ยังเป็นกลุ่มโมเลกุลหลักในการปล่อยอินฟราเรด CO2 และ O3 (สถานะควอนตัม) มีลักษณะการสั่นของโมเลกุลแบบยวบยาบซึ่งเมื่ออยู่ในภาวะที่เป็นหน่วยเล็กสุดมันจะถูกกระตุ้นจากการชนของพลังงานที่เข้าปะทะกับบรรยากาศของโลก ตัวอย่างเช่น คาร์บอนไดออกไซด์ซึ่งเป็นโมเลกุลเป็นแบบเกาะกันตามยาวแต่มีรูปแบบการสั่นที่สำคัญคือการแอ่นตัวของโมเลกุลที่คาร์บอนไดออกไซด์ที่อยู่ตรงกลางเอนไปข้างหนึ่งและออกซิเจนแอ่นไปอีกข้างหนึ่งทำให้เกิดประจุไฟฟ้าแยกตัวออกมาเป็น "ขั้วคู่" (dipolขณะนี้อี) ชั่วขณะหนึ่งซึ่งทำให้โมเลกุลของคาร์บอนไดออกไซด์ดูดกลืนรังสีอินฟราเรดไว้ได้การปะทะทำให้เกิดการถ่ายโอนพลังงานไปทำให้ก๊าซที่อยู่รอบ ๆ ร้อนขึ้นหรืออีกนัยหนึ่งก็คือโมเลกุลของ CO2 ถูกสั่นโดยการปะทะนั่นเองประมาณร้อยละ 5 ของโมเลกุล CO2 ถูกสั่นโดยที่อุณหภูมิของห้องและปริมาณร้อยละ 5 นี้เองที่เปล่งรังสีออกมาการเกิดที่สำคัญของปรากฏการณ์เรือนกระจกจึงเนื่องมาจากการปรากฏอยู่ของคาร์บอนไดออกไซด์ที่สั่นไหวง่ายเมื่อถูกกระตุ้นโดยอินฟราเรด CO2ยังมีรูปแบบอื่นอีก 2 รูปแบบได้แก่การแอ่นตัวที่สมดุลไม่เปล่งรังสีกับการแอ่นตัวที่ไม่สมดุลที่ทำให้เกิดความถี่ในการสั่นสูงเกินที่จะถูกกระตุ้นได้ด้วยการปะทะจากความร้อนของบรรยากาศได้แม้มันจะยังทำหน้าที่ดูดกลืนอินฟราเรดได้บ้างก็ตามรูปแบบการสั่นตัวของโมเลกุลของน้ำอยู่อัตราที่สูงเกินที่จะแผ่รังสีออกมาได้อย่างมีผลแต่มันยังสามารถดูดกลืนรังสอินฟราเรดที่มีความถี่สูงได้ไอน้ำมีรูปโมเลกุลแอ่นมีขั้วคู่ที่ถาวร (ปลายของอะตอมออกซิเจนมีอีเลกตรอนมากและอะตอมของไฮโดรเจนมีน้อย) ซึ่งหมายความว่าแสงอินฟราเรดสามารถเปล่งออกและดูดกลืนได้ในระหว่างช่วงต่อของการหมุนตัวและการหมุนตัวก็เกิดได้จากการชนระหว่างการถ่ายโอนพลังงานเมฆก็นับเป็นตัวดูดกลืนรังสีอินฟราเรดที่สำคัญดังนั้นน้ำจึงมีปรากฏการณ์เชิงอเนกต่อการแผ่รังสีอินฟราเรดผ่านช่วงการเป็นไอและช่วงการกลั่นตัวตัวดูดกลืนที่สำคัญอื่น ๆ รวมถึงก๊าซมีเทนไนตรัสออกไซด์และคลอโรฟลูโอโรคาร์บอนการโต้เถียงเกี่ยวกับความสำคัญในความสัมพันธ์ของตัวดูดกลืนรังสีอินฟราเรดชนิดต่างๆ ยังมีความสับสนที่เนื่องมาจากการทับซ้อนกันระหว่างเส้นสเปกตรัมที่เกิดจากก๊าซต่างชนิดที่ถ่างออกเนื่องจากแรงกดดันที่กว้างขึ้น ซึ่งมีผลทำให้การดูดกลืนของก๊าซชนิดหนึ่งไม่อาจเป็นอิสระจากก๊าซอื่นที่มีร่วมอยู่ในขณะนั้นได้ ช่องทางที่อาจทำได้วิธีหนึ่งคือการแยกเอาก๊าซดูดกลืนที่ต้องการวัดออก ปล่อยก๊าซดูดกลืนอื่นๆ ไว้และคงอุณหภูมิไว้ตามเดิมแล้วจึงวัดรังสีอินฟราเรดที่หนีออกสู่ห้วงอวกาศ ค่าที่ลดลงของการดูดกลืนรังสีอินฟราเรดที่วัดได้จึงกลายเป็นตัวสำคัญขององค์ประกอบ และเพื่อให้แม่นยำขึ้น การบ่งชี้ปรากฏการณ์เรือนกระจกให้ชัดเจนว่ามีความแตกต่างกันระหว่างการแผ่รังสอินฟราเรดจากผิวโลกสู่ห้วงอวกาศที่ปราศจากบรรยากาศ กับการแผ่รังสีอินฟราเรดที่หนีออกสู่ห้วงอวกาศตามที่เกิดขึ้นจริง จากนั้นจึงคำนวณอัตราร้อยละของการลดลงของปรากฏการณ์เรือนกระจกเมื่อส่วนประกอบ (constituent) ถูกแยกออกไป ตารางข้างล่างนี้คือผลการคำนวณโดยใช้วิธีนี้ ซึ่งได้ใช้แบบจำลองมิติเดี่ยวของบรรยากาศ การใช้แบบจำลอง 3 มิติที่นำมาใช้คำนวณเมื่อเร็วๆ นี้ได้ผลออกมาใกล้เคียงกัน
การแปล กรุณารอสักครู่..
ผลลัพธ์ (ไทย) 2:[สำเนา]
คัดลอก!
ก๊าซเรือนกระจก [แก้]
ดูบทความหลักที่: ก๊าซเรือนกระจก
กลศาสตร์ควอนตัม (เส้นสเปกตรัม) "การแผ่กว้างของแรงดัน" โฟตอน 1 ตัวและโมเลกุล 2 การวัดสเปกตรัม (วัดสเปกโทรสโก) ซึ่ง ได้แก่ ออกซิเจน (O2) ไนโตรเจน (N2) และอาร์กอน (Ar) (แยกค่าใช้จ่ายชั่วคราว) การขาดความเป็น "ขั้วคู่" คาร์บอนไดออกไซด์และโอโซน (O3) นอกจากนี้ CO2 และ O3 (รัฐควอนตัม) ตัวอย่างเช่น "ขั้วคู่" (ขณะขั้ว) ร้อนขึ้นหรืออีกนัยหนึ่งก็คือโมเลกุลของ CO2 ถูกสั่นโดยการปะทะนั่นเองประมาณร้อยละ 5 ของโมเลกุล CO2 5 นี้เองที่เปล่งรังสีออกมา CO2 ยังมีรูปแบบอื่นอีก 2 รูปแบบ ไอน้ำมีรูปโมเลกุลแอ่นมีขั้วคู่ที่ถาวร ดังนั้น ตัวดูดกลืนที่สำคัญอื่น ๆ รวมถึงก๊าซมีเทน ปล่อยก๊าซดูดกลืนอื่น ๆ และเพื่อให้แม่นยำขึ้น (รัฐธรรมนูญ) ถูกแยกออกไป การใช้แบบจำลอง 3 มิติที่นำมาใช้คำนวณเมื่อเร็ว ๆ นี้ได้ผลออกมาใกล้เคียงกัน







การแปล กรุณารอสักครู่..
ผลลัพธ์ (ไทย) 3:[สำเนา]
คัดลอก!
ก๊าซเรือนกระจก [ แก้ ]

: ก๊าซเรือนกระจกดูบทความหลักที่กลศาสตร์ควอนตัมเป็นวิชาที่ให้พื้นฐานสำหรับใช้คำนวณปฏิสัมพันธ์ระหว่างโมเลกุลและการแผ่กระจายรังสีปฏิสัมพันธ์เกือบทั้งหมดนี้เกิดขึ้นเมื่อความถี่ของการแผ่กระจายรังสีที่เทียบได้กับเส้นสเปกตรัม ( เส้นสเปคตรัม )( การกระตุ้นทางอีเลกทรอนิกส์โดยทั่วไปใช้ไม่ได้กับการแผ่กระจายรังสีอินฟราเรดเนื่องจากความต้องการพลังงานในปริมาณที่มากกว่าที่จะใช้กับโฟตอนอินฟราเรด )

ความกว้างของเส้นสเปกตรัมเป็นองค์ประกอบสำคัญที่จะช่วยให้เกิดความเข้าใจถึงความสำคัญของการดูดกลืนการแผ่รังสีความกว้างของสเปกตรัมในบรรยากาศโดยทั่วไปกำหนดด้วย " การแผ่กว้างของแรงดัน "การดูดกลืนรังสีอินฟราเรดเกือบทั้งหมดในบรรยากาศอาจนึกเปรียบเทียบได้ว่าป็นการชนกันระหว่างสองโมเลกุลการดูดกลืนที่เกิดจากโฟตอนทำปฏิกิริยากับโมเลกุลโดดมีขนาดเล็กมากๆโฟตอน 1 ตัวและโมเลกุล 2 ตัวดังกล่าวสร้างความท้าทายโดยตรงที่ให้น่าสนใจมากขึ้นในเชิงของการคำนวณทางกลศาสตร์ควอนตัมการวัดสเปกตรัม ( ทางวัด )
โมเลกุล / อะตอมที่เป็นองค์ประกอบใหญ่ของบรรยากาศซึ่งได้แก่ออกซิเจน ( O2 )ไนโตรเจน ( N2 ) และอาร์กอน ( AR ) ไม่ทำปฏิกิริยากับรังสีอินฟราเรดมากนักขณะที่โมเลกุลของออกซิเจนและไนโตรเจนสามารถสั่นตัวได้เนื่องจากความสมดุลในตัวการสั่นตัวจึงไม่เกิดการแยกตัวเชิงภาวะชั่วครู่ของประจุไฟฟ้าค่าใช้จ่ายแยก ) การขาดความเป็น " ขั้วคู่ " ของภาวะชั่วครู่ดังกล่าวจึงไม่มีทั้งการดูดกลืนเข้าและการปล่อยรังสีอินฟราเรดออกในบรรยากาศของโลกก๊าซที่ทำหน้าที่หลักในการดูดกลืนอินฟราเรดมากที่สุดคือไอน้ำ( O3 ) นอกจากนี้โมเลกุลอย่างเดียวกันก็ยังเป็นกลุ่มโมเลกุลหลักในการปล่อยอินฟราเรด CO2 และ O3 มีลักษณะการสั่นของโมเลกุลแบบยวบยาบซึ่งเมื่ออยู่ในภาวะที่เป็นหน่วยเล็กสุด ( สถานะควอนตัม )ตัวอย่างเช่นคาร์บอนไดออกไซด์ซึ่งเป็นโมเลกุลเป็นแบบเกาะกันตามยาวแต่มีรูปแบบการสั่นที่สำคัญคือการแอ่นตัวของโมเลกุลที่คาร์บอนไดออกไซด์ที่อยู่ตรงกลางเอนไปข้างหนึ่งและออกซิเจนแอ่นไปอีกข้างหนึ่งทำให้เกิดประจุไฟฟ้าแยกตัวออกมาเป็น" ขั้วคู่ " ( ไดโพลโมเมนต์ ) ชั่วขณะหนึ่งซึ่งทำให้โมเลกุลของคาร์บอนไดออกไซด์ดูดกลืนรังสีอินฟราเรดไว้ได้การปะทะทำให้เกิดการถ่ายโอนพลังงานไปทำให้ก๊าซที่อยู่รอบๆร้อนขึ้นหรืออีกนัยหนึ่งก็คือโมเลกุลของคาร์บอนไดออกไซด์ประมาณร้อยละ 5 ของโมเลกุล CO2 ถูกสั่นโดยที่อุณหภูมิของห้องและปริมาณร้อยละ 5 นี้เองที่เปล่งรังสีออกมาCO2

ยังมีรูปแบบอื่นอีก 2 รูปแบบ
การแปล กรุณารอสักครู่..
 
ภาษาอื่น ๆ
การสนับสนุนเครื่องมือแปลภาษา: กรีก, กันนาดา, กาลิเชียน, คลิงออน, คอร์สิกา, คาซัค, คาตาลัน, คินยารวันดา, คีร์กิซ, คุชราต, จอร์เจีย, จีน, จีนดั้งเดิม, ชวา, ชิเชวา, ซามัว, ซีบัวโน, ซุนดา, ซูลู, ญี่ปุ่น, ดัตช์, ตรวจหาภาษา, ตุรกี, ทมิฬ, ทาจิก, ทาทาร์, นอร์เวย์, บอสเนีย, บัลแกเรีย, บาสก์, ปัญจาป, ฝรั่งเศส, พาชตู, ฟริเชียน, ฟินแลนด์, ฟิลิปปินส์, ภาษาอินโดนีเซี, มองโกเลีย, มัลทีส, มาซีโดเนีย, มาราฐี, มาลากาซี, มาลายาลัม, มาเลย์, ม้ง, ยิดดิช, ยูเครน, รัสเซีย, ละติน, ลักเซมเบิร์ก, ลัตเวีย, ลาว, ลิทัวเนีย, สวาฮิลี, สวีเดน, สิงหล, สินธี, สเปน, สโลวัก, สโลวีเนีย, อังกฤษ, อัมฮาริก, อาร์เซอร์ไบจัน, อาร์เมเนีย, อาหรับ, อิกโบ, อิตาลี, อุยกูร์, อุสเบกิสถาน, อูรดู, ฮังการี, ฮัวซา, ฮาวาย, ฮินดี, ฮีบรู, เกลิกสกอต, เกาหลี, เขมร, เคิร์ด, เช็ก, เซอร์เบียน, เซโซโท, เดนมาร์ก, เตลูกู, เติร์กเมน, เนปาล, เบงกอล, เบลารุส, เปอร์เซีย, เมารี, เมียนมา (พม่า), เยอรมัน, เวลส์, เวียดนาม, เอสเปอแรนโต, เอสโทเนีย, เฮติครีโอล, แอฟริกา, แอลเบเนีย, โคซา, โครเอเชีย, โชนา, โซมาลี, โปรตุเกส, โปแลนด์, โยรูบา, โรมาเนีย, โอเดีย (โอริยา), ไทย, ไอซ์แลนด์, ไอร์แลนด์, การแปลภาษา.

Copyright ©2026 I Love Translation. All reserved.

E-mail: