The T. crunogena genome is confined to a single circular chromosome consisting of 2.43 megabase pairs, with a GC content of 43.1% and a high coding density which codes for 2196 proteins and 55 RNAs. (4) The chromosome is densely packed with genes involved in electron transport (used to gain energy from sulfur compounds), energy and carbon metabolism, along with those required for nucleotide and amino acid synthesis and other cellular processes. The genome included a relative abundance of coding sequences encoding regulatory proteins: some proteins are used to control the expression of genes encoding carboxysomes, some are used to regulate multiple dissolved inorganic nitrogen and phosphate transporters, as well as a phosphonate operon, which provide this species with a variety of options for acquiring these substrates from the environment. (4)
All the components of the Sox system, a sulfur-oxidizing pathway, were found in the T. crunogena’s genome. Together, these Sox genes completely oxidize, or strip electrons, from a variety of reduced sulfur-related compounds (producing sulfate). The microbe also harbors an enzyme that stops short of complete oxidation to sulfate (producing elemental sulfur instead), which adds to the regulation and control of the system. (2) T. crunogena has proportionally more regulatory and signaling molecules than a free-living planktonic species. This enhanced repertoire reflects the different demands of life in extreme, volatile conditions—which requires rapid, flexible cellular responses—compared with the relatively stable existence of plankton floating on the open ocean.(4)
A putative prophage genome was found in the T. crunogena chromosome while no plasmid was found. The putative prophage is 38,090 base pairs long and contains 54 coding sequences. The prophage genome begins with a tyrosine integrase and contains a cI-like repressor gene. (2)
The genome sequence provides a reference point for uncultivated chemoautotrophic sulfur-oxidizing bacteria.