13.23 Describe structural-foam molding.
Answer. Structural-foam molding is an injection molding process in which a gas or gas-producing
ingredient is mixed with the polymer melt prior to injection into the mold cavity; this results in the
part having a tough outer skin surrounded by a foam core.
13.24 What are the significant differences in the equipment and operating procedures between injection
molding of thermoplastics and injection molding of thermosets?
Answer. The differences in injection molding of thermosets are (1) shorter barrel length, (2) lower
temperatures in the barrel, these first two reasons to prevent premature curing; and (3) use of a
heated mold to cause cross-linking of the TS polymer.
13.25 What is reaction injection molding?
Answer. Reaction injection molding involves the mixing of two highly reactive liquid ingredients
and immediately injecting the mixture into a mold cavity where chemical reactions leading to
solidification occur. The two ingredients form the components used in catalyst-activated or
mixing-activated thermoset systems.
13.26 What kinds of products are produced by blow molding?
Answer. Blow molding is used to produce hollow, seamless containers, such as bottles.
13.27 What is the form of the starting material in thermoforming?
Answer. Thermoforming starts with a thermoplastic sheet or film.
13.28 What is the difference between a positive mold and a negative mold in thermoforming?
Answer. A positive mold has a convex shape; a negative mold has a concave cavity.
13.29 Why are the molds generally more costly in mechanical thermoforming than in pressure or vacuum
thermoforming?
Answer. In mechanical thermoforming, matching mold halves are required; while in other
thermoforming processes, only one mold form is required.
13.30 What are the processes by which polymer foams are produced?
Answer. There are several foaming processes: (1) mechanical agitation - mixing a liquid resin with
air, then hardening the polymer by means of heat or chemical reaction; (2) mixing a physical
blowing agent with the polymer - a gas such as nitrogen (N2) or pentane (C5H12) which can be
dissolved in the polymer melt under pressure, so that the gas comes out of solution and expands
when the pressure is subsequently reduced; and (3) mixing the polymer with chemical compounds,
called chemical blowing agents, that decompose at elevated temperatures to liberate gases such as
CO2 or N2 within the melt.
13.31 What are some of the general considerations that product designers must keep in mind when
designing components out of plastics?
Answer. Some of the general considerations are the following: (1) Plastics are not as strong or stiff
as metals and should not be used in applications where high stresses will be encountered. (2) Impact
resistance of plastics is general good, better than many ceramics. (3) Service temperatures of plastics
are limited relative to engineering metals and ceramics. (4) Thermal expansion is greater for plastics
than metals; so dimensional changes due to temperature variations are much more significant than
for metals. (5) Many types of plastics degrade from sunlight and certain other forms of radiation. Also, some plastics degrade in oxygen and ozone atmospheres. Finally, plastics are soluble in many
common solvents.