Vitamin C in Skin Care
Vitamin C, also known as ascorbic acid, is the prince of vitamins and the first dietary substance associated with curing a disease known as scurvy, a deadly and painful illness that was prevalent before James Lind, MD, discovered the cure in 1747. He established that the absence of a compound in the diet was the cause of scurvy. Lind died in 1794 at 78, and the following year, the British Admiralty adopted the use of citrus foods as the prevention of scurvy. In 1935, vitamin C was synthesized in pure form.
Vitamin C is also an important part of a variety of bodily functions, ranging from bone formation to scar tissue repair. It is the major water-soluble antioxidant, it destroys free radicals, it plays a critical role in hydroxylation reactions that are essential for the formation of collagen, and carnitine synthesis uses vitamin C as a reducing agent. It is directly involved in the formation of norepinephrine and serotonin, two important substances needed for the proper function of the nervous system; and it is also involved in the synthesis of hormones, hormone-releasing factors and neurotransmitters.
The chemistry of vitamin C
The chemistry of vitamin Ca and its role in the body can be more easily understood if you remember that it is a reducing agent. This means that it donates hydrogen to other compounds. Vitamin C is formed from glucose in the bodies of most animals, except primates and guinea pigs. Humans lack the enzyme L-gulonolactone oxidase, which converts glucose to ascorbic acid. Although other enzymes are also required for the conversion, this one is definitely lacking. It is a simple sugar molecule with a slight modification. The important parts of this figure are the two OH groups (hydroxyl groups) on the vitamin C molecule. It is the loss of the hydrogen atoms from these OHs that makes vitamin C a hydrogen donor and, therefore, a reducing agent.
Vitamin E, also known as tocopherol, is an oil-soluble vitamin antioxidant and a reducing agent. It has only one OH group on the end, which is the active part of the molecule that donates the hydrogen atom in an antioxidant reaction. Now, here is the bad thing about vitamin E; losing a hydrogen from the hydroxyl group converts the molecule of vitamin into a quinone. So what, you say, is the big deal? Quinones are highly reactive molecules associated with neoplastic disordersb. The OH group is converted to carbonyl—that is to a -C=O—which can very easily react with proteins and make them nonfunctional. Along comes vitamin C and donates an H+ to the -C=O, changing back to the more beneficial -OH group. This is a very necessary function of vitamin C as a critical part of the antioxidant defense system.
Aging skin
Consider that the signs of aging skin are the same ones associated with loss of collagen production and damaged collagen. The use of vitamin C is a major line of defense, as well as a treatment of aging skin. Women experience a gradual loss of collagen integrity and production throughout the years that is associated with the flux in circulating collagenase due to cyclic levels determined by the menstrual cycle. Although this a new concept, it is nevertheless true. Unfortunately, after menopause, the ravages of collagenase go on due to estrogen-initiated production from adipose tissues. Sun damage and smoking are two other major causes of damaged skin, and although the skin can repair a lot of insults, these are beyond any that the body can reasonably repair. Following are ways to treat aging skin.
Start by advising clients to consume a good diet; avoid sugars and sweets, eat lots of fruits and vegetables, choose lean meats and fish, and avoid fried, broiled and roasted foods. Tell them to take a multivitamin daily, along with 100 mg of proanthocyanidins (OPC) and 500 mg of vitamin C daily.
Source: http://www.skininc.com/skinscience/physiology/46738787.html?
Vitamin C in Skin Care
Vitamin C, also known as ascorbic acid, is the prince of vitamins and the first dietary substance associated with curing a disease known as scurvy, a deadly and painful illness that was prevalent before James Lind, MD, discovered the cure in 1747. He established that the absence of a compound in the diet was the cause of scurvy. Lind died in 1794 at 78, and the following year, the British Admiralty adopted the use of citrus foods as the prevention of scurvy. In 1935, vitamin C was synthesized in pure form.
Vitamin C is also an important part of a variety of bodily functions, ranging from bone formation to scar tissue repair. It is the major water-soluble antioxidant, it destroys free radicals, it plays a critical role in hydroxylation reactions that are essential for the formation of collagen, and carnitine synthesis uses vitamin C as a reducing agent. It is directly involved in the formation of norepinephrine and serotonin, two important substances needed for the proper function of the nervous system; and it is also involved in the synthesis of hormones, hormone-releasing factors and neurotransmitters.
The chemistry of vitamin C
The chemistry of vitamin Ca and its role in the body can be more easily understood if you remember that it is a reducing agent. This means that it donates hydrogen to other compounds. Vitamin C is formed from glucose in the bodies of most animals, except primates and guinea pigs. Humans lack the enzyme L-gulonolactone oxidase, which converts glucose to ascorbic acid. Although other enzymes are also required for the conversion, this one is definitely lacking. It is a simple sugar molecule with a slight modification. The important parts of this figure are the two OH groups (hydroxyl groups) on the vitamin C molecule. It is the loss of the hydrogen atoms from these OHs that makes vitamin C a hydrogen donor and, therefore, a reducing agent.
Vitamin E, also known as tocopherol, is an oil-soluble vitamin antioxidant and a reducing agent. It has only one OH group on the end, which is the active part of the molecule that donates the hydrogen atom in an antioxidant reaction. Now, here is the bad thing about vitamin E; losing a hydrogen from the hydroxyl group converts the molecule of vitamin into a quinone. So what, you say, is the big deal? Quinones are highly reactive molecules associated with neoplastic disordersb. The OH group is converted to carbonyl—that is to a -C=O—which can very easily react with proteins and make them nonfunctional. Along comes vitamin C and donates an H+ to the -C=O, changing back to the more beneficial -OH group. This is a very necessary function of vitamin C as a critical part of the antioxidant defense system.
Aging skin
Consider that the signs of aging skin are the same ones associated with loss of collagen production and damaged collagen. The use of vitamin C is a major line of defense, as well as a treatment of aging skin. Women experience a gradual loss of collagen integrity and production throughout the years that is associated with the flux in circulating collagenase due to cyclic levels determined by the menstrual cycle. Although this a new concept, it is nevertheless true. Unfortunately, after menopause, the ravages of collagenase go on due to estrogen-initiated production from adipose tissues. Sun damage and smoking are two other major causes of damaged skin, and although the skin can repair a lot of insults, these are beyond any that the body can reasonably repair. Following are ways to treat aging skin.
Start by advising clients to consume a good diet; avoid sugars and sweets, eat lots of fruits and vegetables, choose lean meats and fish, and avoid fried, broiled and roasted foods. Tell them to take a multivitamin daily, along with 100 mg of proanthocyanidins (OPC) and 500 mg of vitamin C daily.
Source: http://www.skininc.com/skinscience/physiology/46738787.html?
การแปล กรุณารอสักครู่..