Energy and the Confused Student V: The Energy/Momentum Approach to Problems Involving Rotating and Deformable Systems
John W. Jewett Jr., California State Polytechnic University, Pomona, CA
E
nergy is a critical concept in physics problem-solving, but is often a major source of confusion for students if the presentation is not carefully crafted by the instructor or the textbook. A common approach to problems involving deformable or rotating systems that has been discussed in the literature is to employ the work-kinetic energy theorem together with a “pseudowork-kinetic energy theorem” or a “center-of-mass equation.” This article discusses an alternative approach that employs neither of these equations and allows students a more global and less confusing approach to such problems. The approach is demonstrated for three sample situations from the literature.
that of the particle. Now consider a force acting on a deformable system or one that rotates. In these types of problems, the displacement of the point of application of a force on the system may be different from the displacement of the center of mass of the system. A number of approaches have been offered for these types of problems. Many involve a formalism in which Newton’s second law is integrated to arrive at
Deformable and Rotating Objects
There has been significant discussion in the literature1-7 about difficulties in applying a work-energy approach to solutions of problems. For problems in which forces are applied to a particle or a rigid, nonrotating object in a friction-free environment, the use of the work-kinetic energy theorem, is straightforward, with K representing the kinetic energy of the particle or object. In the definition of work, as discussed in the first article8 in this series, the displacement is that of the point of application of the force. For a rigid, nonrotating object, which we will call from now on a particle because it can be modeled as such, this displacement is the same as In this expression, the integral of the net external force on the system over the displacement of its center of mass equals the change in the kinetic energy of its center of mass. The integral on the left of Eq. is called “pseudowork” by Penchina,2 Sherwood,3 and Mallinckrodt and Leff.5 This quantity is called “center-of-mass work” by Mungan.7 Equation is called the “pseudowork-kinetic energy theorem” by Penchina2 and Sherwood.3 It is called the “CM (center of mass) equation” by Sherwood and Bernard.4 Chabay and Sherwood9 have modified an earlier approach using this equation by applying an energy principle to a “point-particle system,” represented by modeling a system as if all of its mass were at the center of mass. In this approach, the displacement of interest is again that of the center of mass. Equations (1) and (2) are used together to address a number of problems in the literature, for example in articles by Sherwood3 and Mungan.7 It is my intent in this article to argue that neither Eq. (1) nor Eq. (2) is the best starting point for students to begin these
types of problems, or for that matter, any type of energy problem. In particular, Eq. (2) is an “energylike” equation that can lead to further student confusion. There is no need to introduce a new equation such as this, especially one that will confuse students. Students taught with a carefully crafted energy approach already have the tools they need to solve complex problems. Therefore, the approach to these problems is straightforward and should be presented as such rather than confusing the issue with extra unnecessary equations.
The Alternative to the Pseudowork or Center-of-Mass Equation
Let us now turn our attention to the use of Eq. (2) to solve problems in combination with the workkinetic energy theorem. There are the following disadvantages to this approach:
1. The integral on the left of Eq. (2) is not work be-
The Alternative to the Work-Kinetic Energy Theorem
Traditional approaches to teaching the concept of energy begin with the work-kinetic energy theorem and then proceed to expand the equation by adding terms as new situations are encountered. These additional terms include work done by nonconservative forces, potential energy, etc. These kinds of expansions of the basic work-kinetic energy theorem are very difficult for novice physics students to understand and perform on their own. I find it better to take the time to present students with a global equation for energy at the beginning of the discussion in mechanics and then reduce the equation accordingly for a given situation, as discussed in the fourth article10 in this series. The global equation is the conservation of energy equation
It is far easier for students to identify the terms that do not belong in a well-understood general equation than it is for them to come up with new terms that must be added to a simplified equation in a traditional approach. Students taught with the global approach to energy will not reach for the work-kinetic energy theorem when they begin a new challenging problem, but will instead use Eq. (3). In many cases, the work-kinetic energy theorem will not be appropriate to solve the problem, so the global approach makes the problem soluble.
cause the displacement in the equation is that of the center of mass of the system, not that of the point of application of the force. By calling the left side of Eq. (2) “pseudowork” or “center-of-mass work,” we are suggesting too strongly that the integral is some form of work. The instructor who has carefully identified the displacement in the definition of work as that of the point of application of the force will have difficulty with Eq. (2) in presenting students with a term that looks like work but includes a displacement that is defined differently. 2. The point is made in the literature3 that Eq. (2) is not an energy equation because it is generated from a dynamical equation, Newton’s second law. Students have difficulty buying into this because that sure looks like work on the left-hand side and that sure looks like kinetic energy on the righthand side of Eq. (2). 3. In our teaching, we stress the importance of solving problems from fundamental principles. There is one fundamental principle in an energy approach: conservation of energy. There is one equation associated with this principle: the conservation of energy equation. In the global approach to energy, Eq. (1) is a specific reduction of the general conservation of energy equation in a special case. Because Eq. (2) looks so much like an energy equation, students are confused by the fact that they appear to be using two equations from an energy approach when only one exists. These disadvantages disappear if a different approach is used in place of Eq. (2). It is easy to show that Eq. (2) is mathematically equivalent to the impulsemomentum theorem, because both are generated from Newton’s second law. The impulse-momentum theorem, carries the same information as the center-of-mass
equation. Students already have the tool of the impulse-momentum theorem in their toolbox. Why introduce yet another equation, Eq. (2), that carries the same information? Furthermore, why introduce an energy-like equation to students but tell them that it’s not a true energy equation? Therefore, in the energy/momentum approach, we use the impulse-momentum theorem for problem-solving in place of the pseudowork or center-of-mass equation. The student is already familiar with this equation, so there is no reason to introduce a new energy-like equation that confuses the understanding of work.
The Energy/Momentum Approach
In the energy/momentum approach discussed in this article, the two equations used to address these problems are the CEE, Eq. (3), and the impulse-momentum theorem, Eq. (4), rather than Eqs. (1) and (2), as in the traditional approach. The energy/momentum approach has the following advantages:
1. There is no need to introduce “pseudowork” or
Fig. 1. Two pucks are connected by a string of length l. A constant force of magnitude F pulls on the center point of the string, causing the pucks to move to the right as well as toward each other. When they collide, the collision is perfectly inelastic.
as shown in Fig. 1(b). What is v and how much of the energy transferred into the system from the surroundings has been transformed to internal energy?
“center-of-mass work.” There is only one type of work done on a system, the work as calculated with the standard definition. 2. Equation (4) is clearly not an energy equation so it will not be confused with other, true energy equations. 3. Problems involving deformable or rotating systems can be solved by selecting one fundamental principle from an energy approach, the CEE, and one principle from a momentum approach, the impulse-momentum theorem.
Example Problems
Using the energy/momentum approach, let us address three sample problems. The first problem below is a simple situation involving a deformable system described by Sherwood.3
Problem 1
Figure 1(a) shows an overhead view of the initial configuration of two pucks of mass m on a frictionless surface tied together with a string of length l and negligible mass. At time t = 0, a constant force of magnitude F begins to pull to the right on the center point of the string. At time t, the moving pucks strike each other and stick together. At this time, the point of application of the force has moved through a distance d and the pucks have attained a speed v,
The solution described here arrives at the same result as Sherwood by using the energy/momentum approach. We identify the system as the two pucks. Because the system is deformable, the distance that the center of mass moves during this process is not the same as the distance that the point of application of the force moves, as shown in Fig. 1(b). From this figure (modeling the pucks as having zero
พลังงานและ v คัมภีร์:วิธีพลังงาน/โมเมนตัมการหมุน และ Deformable ระบบที่เกี่ยวข้องกับปัญหานักเรียนสับสนจอห์น W. Jewett จูเนียร์ มหาวิทยาลัยแคลิฟอร์เนียรัฐโรงเรียนสารพัดช่าง Pomona, CAอีnergy เป็นแนวคิดสำคัญในฟิสิกส์การแก้ปัญหา แต่มักจะเป็นแหล่งสำคัญของความสับสนสำหรับนักเรียนถ้างานนำเสนอจะไม่อาจารย์ผู้สอนหรือตำราเรียน วิธีทั่วไปปัญหาที่เกี่ยวข้องกับระบบ deformable หรือหมุนที่มีกล่าวถึงในวรรณคดีคือการ ใช้ทฤษฎีบทพลังงานเดิม ๆ ทำงานร่วมกับ "ทฤษฎีบทพลังงาน pseudowork เดิมๆ" หรือเป็น "ศูนย์กลางของมวลสมการ" บทความนี้อธิบายถึงวิธีการอื่นที่มีใช่ของสมการเหล่านี้ และช่วยให้นักเรียนทั่วโลกมากขึ้น และวิธีการปัญหาดังกล่าวน้อยกว่าความสับสน วิธีจะแสดงสำหรับสถานการณ์ที่ 3 ตัวอย่างจากวรรณคดีที่อนุภาค ตอนนี้ พิจารณาแรงที่กระทำบนระบบ deformable หรือที่หมุน ในชนิดของปัญหาเหล่านี้ ย้ายของจุดการใช้งานของกองทัพระบบอาจแตกต่างจากปริมาณกระบอกสูบของศูนย์กลางมวลของระบบ จำนวนวิธีได้รับการเสนอสำหรับชนิดของปัญหาเหล่านี้ หลายเกี่ยว formalism เป็นที่รวมกฎหมายที่สองของนิวตันเพื่อให้ถึงที่ Deformable และหมุนวัตถุได้มีการสนทนาอย่างมีนัยสำคัญใน literature1-7 เกี่ยวกับความยากลำบากในการใช้วิธีการผลิตพลังงานเพื่อแก้ปัญหา สำหรับปัญหาที่กองทัพจะใช้กับอนุภาคหรือวัตถุแข็ง nonrotating ในสภาพแวดล้อมที่ปราศจากแรงเสียดทาน การใช้ทฤษฎีบทพลังงานงานเดิม ๆ ได้ตรงไปตรงมา มี K แทนพลังงานจลน์ของอนุภาคหรือวัตถุ ในข้อกำหนดของงาน ตามที่อธิบายไว้ใน article8 แรกในชุดนี้ แทนที่อยู่ที่จุดของแอพลิเคชันของกองทัพ สำหรับงวด nonrotating วัตถุ ซึ่งเราจะเรียกจากอนุภาคเนื่องจากสามารถจำลองเช่น ปริมาณกระบอกสูบนี้เป็นเดียวกับนิพจน์นี้ ทฤษฎีบูรณาการของแรงภายนอกสุทธิกว่าแทนของศูนย์กลางมวลของระบบเท่ากับการเปลี่ยนแปลงพลังงานจลน์ของของศูนย์กลางมวล ทฤษฎีบูรณาการทางด้านซ้ายของ Eq. เรียกว่า "pseudowork" โดยเชอร์ 2, 3, Penchina และ Mallinckrodt และ Leff.5 นี้เรียกว่า "งานศูนย์กลางของมวลชน" โดยสมการ Mungan.7 เรียกว่า "ทฤษฎีบทเดิม ๆ pseudowork พลังงาน" โดย Penchina2 และ Sherwood.3 จะเรียกว่า "สมการ CM (ศูนย์กลางมวล)" โดยเชอร์ และ Bernard.4 Chabay และ Sherwood9 ได้ปรับเปลี่ยนวิธีการก่อนหน้านี้ใช้สมการนี้ โดยใช้หลักการพลังงาน "อนุภาคจุดระบบ , "แสดง โดยสร้างแบบจำลองระบบเป็นถ้ามวลของทั้งหมดได้ที่ศูนย์ของมวล ในวิธีการนี้ แทนที่น่าสนใจได้อีกที่ของศูนย์กลางมวล สมการ (1) และ (2) จะใช้ร่วมกันเพื่อแก้ไขปัญหาในวรรณคดี ตัวอย่าง ในบทความ Sherwood3 และ Mungan.7 มันเป็นเจตนาของฉันในบทความนี้เถียงว่า ไม่ Eq. (1) หรือ (2) Eq. เป็นจุดเริ่มต้นส่วนนักเรียนจะเริ่มต้นเหล่านี้ ชนิด ของปัญหา หรือ สำหรับ เรื่องที่ ชนิดของปัญหาพลังงานใด ๆ โดยเฉพาะอย่างยิ่ง Eq. (2) เป็นสมการ "energylike" ที่สามารถนำไปสู่ความสับสนของนักเรียนต่อไป ไม่จำเป็นต้องแนะนำสมการใหม่นี้ โดยเฉพาะอย่างยิ่งหนึ่งที่จะสับสนระหว่างเรียนได้ นักเรียนที่สอน ด้วยวิธีพลังงานที่สร้างขึ้นอย่างระมัดระวังแล้วมีเครื่องมือที่จำเป็นต้องแก้ปัญหาที่ซับซ้อน ดังนั้น วิธีการปัญหาเหล่านี้จะตรงไปตรงมา และควรจะนำเสนอเช่นแทน confusing ปัญหา ด้วยสมการเพิ่มเติมไม่จำเป็นทางเลือกสมการของ Pseudowork หรือศูนย์กลางของมวลให้เราหันเหความสนใจกับการใช้ Eq. (2) การแก้ปัญหาร่วมกับทฤษฎีบทพลังงาน workkinetic เดี๋ยวนี้ มีข้อเสียต่อไปวิธีนี้:1.ทฤษฎีบูรณาการทางด้านซ้ายของ Eq. (2) ไม่มี-ในทางทฤษฎีบทพลังงานทำงานเดิม ๆTraditional approaches to teaching the concept of energy begin with the work-kinetic energy theorem and then proceed to expand the equation by adding terms as new situations are encountered. These additional terms include work done by nonconservative forces, potential energy, etc. These kinds of expansions of the basic work-kinetic energy theorem are very difficult for novice physics students to understand and perform on their own. I find it better to take the time to present students with a global equation for energy at the beginning of the discussion in mechanics and then reduce the equation accordingly for a given situation, as discussed in the fourth article10 in this series. The global equation is the conservation of energy equation It is far easier for students to identify the terms that do not belong in a well-understood general equation than it is for them to come up with new terms that must be added to a simplified equation in a traditional approach. Students taught with the global approach to energy will not reach for the work-kinetic energy theorem when they begin a new challenging problem, but will instead use Eq. (3). In many cases, the work-kinetic energy theorem will not be appropriate to solve the problem, so the global approach makes the problem soluble.cause the displacement in the equation is that of the center of mass of the system, not that of the point of application of the force. By calling the left side of Eq. (2) “pseudowork” or “center-of-mass work,” we are suggesting too strongly that the integral is some form of work. The instructor who has carefully identified the displacement in the definition of work as that of the point of application of the force will have difficulty with Eq. (2) in presenting students with a term that looks like work but includes a displacement that is defined differently. 2. The point is made in the literature3 that Eq. (2) is not an energy equation because it is generated from a dynamical equation, Newton’s second law. Students have difficulty buying into this because that sure looks like work on the left-hand side and that sure looks like kinetic energy on the righthand side of Eq. (2). 3. In our teaching, we stress the importance of solving problems from fundamental principles. There is one fundamental principle in an energy approach: conservation of energy. There is one equation associated with this principle: the conservation of energy equation. In the global approach to energy, Eq. (1) is a specific reduction of the general conservation of energy equation in a special case. Because Eq. (2) looks so much like an energy equation, students are confused by the fact that they appear to be using two equations from an energy approach when only one exists. These disadvantages disappear if a different approach is used in place of Eq. (2). It is easy to show that Eq. (2) is mathematically equivalent to the impulsemomentum theorem, because both are generated from Newton’s second law. The impulse-momentum theorem, carries the same information as the center-of-mass equation. Students already have the tool of the impulse-momentum theorem in their toolbox. Why introduce yet another equation, Eq. (2), that carries the same information? Furthermore, why introduce an energy-like equation to students but tell them that it’s not a true energy equation? Therefore, in the energy/momentum approach, we use the impulse-momentum theorem for problem-solving in place of the pseudowork or center-of-mass equation. The student is already familiar with this equation, so there is no reason to introduce a new energy-like equation that confuses the understanding of work.The Energy/Momentum ApproachIn the energy/momentum approach discussed in this article, the two equations used to address these problems are the CEE, Eq. (3), and the impulse-momentum theorem, Eq. (4), rather than Eqs. (1) and (2), as in the traditional approach. The energy/momentum approach has the following advantages:1. There is no need to introduce “pseudowork” orFig. 1. Two pucks are connected by a string of length l. A constant force of magnitude F pulls on the center point of the string, causing the pucks to move to the right as well as toward each other. When they collide, the collision is perfectly inelastic.as shown in Fig. 1(b). What is v and how much of the energy transferred into the system from the surroundings has been transformed to internal energy?“center-of-mass work.” There is only one type of work done on a system, the work as calculated with the standard definition. 2. Equation (4) is clearly not an energy equation so it will not be confused with other, true energy equations. 3. Problems involving deformable or rotating systems can be solved by selecting one fundamental principle from an energy approach, the CEE, and one principle from a momentum approach, the impulse-momentum theorem.
Example Problems
Using the energy/momentum approach, let us address three sample problems. The first problem below is a simple situation involving a deformable system described by Sherwood.3
Problem 1
Figure 1(a) shows an overhead view of the initial configuration of two pucks of mass m on a frictionless surface tied together with a string of length l and negligible mass. At time t = 0, a constant force of magnitude F begins to pull to the right on the center point of the string. At time t, the moving pucks strike each other and stick together. At this time, the point of application of the force has moved through a distance d and the pucks have attained a speed v,
The solution described here arrives at the same result as Sherwood by using the energy/momentum approach. We identify the system as the two pucks. Because the system is deformable, the distance that the center of mass moves during this process is not the same as the distance that the point of application of the force moves, as shown in Fig. 1(b). From this figure (modeling the pucks as having zero
การแปล กรุณารอสักครู่..
