The dissolved O2 concentrations decreased significantly over time
(p b 0.0001) in the purge of the vacuum-packaged pork chops (Fig. 4).
On day 0, the dissolved O2 concentrations was 8.31 mg/L before
decreasing to 0.326 mg/L on day 5. This decrease in dissolved O2
concentrations occurred because there was an approximate log10
3 CFU/g increase in bacterial populations between day 0 and day 5. As
the bacterial populations increased, their cellular metabolism would
have resulted in the dissolved O2 being converted to CO2 (Dainty &
Mackey, 1992). Between day 15 and day 45, the dissolved O2 concentrations
remained around 0.11 mg/L but on day 60, they increased slightly
to 0.15 mg/L. The dissolved O2 concentrations increased slightly at the
end of the storage period because there was a loss in vacuum and gas
permeation through the packaging film. Gas permeation through the
packaging film occurred because the had an O2 transmission rate of
3–6 cm3
/m2
, 24 h, 1 atm, at 4.4 °C and 0% relative humidity. Since the
dissolved O2 concentrations in the present study remain below
0.20 mg/L, or 2%, throughout the storage period after day 5, it is consistent
with the literature that O2 concentrations in vacuum-packages
remains around 1% after sealing (Dainty & Mackey, 1992).
The results of these experiments demonstrated that the spoilage
bacteria in vacuum-packaged pork chops increase the dissolved CO2
and decrease the dissolved O2 concentrations. The dissolved CO2 concentrations
increased because of increasing LAB concentrations that produce
CO2 as a metabolism by-product (Hammes & Hertel, 2006). The increasing
spoilage bacteria concentrations also decrease the dissolved O2
concentrations because of the increased rates of cellular respiration occurring
(Dainty & Mackey, 1992). These results also showed that LAB dominate
the spoilage flora of vacuum-packaged pork chops because they had
the highest microbial populations throughout the storage period, either
core or purge. After LAB, the Enterobacteriaceae had the second highest
populations and also contributed to spoilage, but did not dominate the
spoilage flora. B. thermosphacta also contributes to spoilage, but they
also do not dominate because they had the lowest populations out of all
the bacterial types measured.
ละลายออกซิเจนความเข้มข้นลดลงอย่างมากตลอดเวลา
( P B 0.0001 ) ในการกำจัดสิว บรรจุเนื้อหมู ( ภาพที่ 4 ) .
ในวันที่ 0 O2 ละลายน้ำความเข้มข้นคือ 8.31 มก. / ล. ก่อน
ลดลง 0.326 มิลลิกรัมต่อลิตรในวันที่ 5 ลดปริมาณ O2
ความเข้มข้นนี้เกิดขึ้นเพราะมีประมาณ LN
3 CFU / g เพิ่มขึ้นในประชากรแบคทีเรียระหว่างวันที่ 0 และวันที่ 5 โดย
ประชากรแบคทีเรียเพิ่มขึ้นการเผาผลาญอาหารของเซลล์จะ
มีผลใน O2 ที่ละลายน้ำ ถูกแปลงเป็น CO2 ( งดงาม&
Mackey , 1992 ) ระหว่างวันที่ 15 และวัน 45 , ละลายน้ำความเข้มข้นของ O2
ยังคงประมาณ 0.11 มิลลิกรัมต่อลิตร แต่ใน 60 วัน จะเพิ่มขึ้นเล็กน้อย
0.15 มก. / ล. ปริมาณออกซิเจนความเข้มข้นเพิ่มขึ้นเล็กน้อยที่
จบช่วงกระเป๋า เพราะมีการสูญเสียในสุญญากาศการซึมผ่านฟิล์มบรรจุภัณฑ์และแก๊ส
การซึมผ่านของก๊าซผ่าน
ฟิล์มบรรจุภัณฑ์ที่เกิดขึ้นเพราะมีอัตราการส่งของ O2
3 – 6 cm3
/ m2
1 ตู้ 24 ชม. ที่ 4.4 ° C และความชื้นสัมพัทธ์ 0 . เนื่องจาก O2
ละลายความเข้มข้นในการศึกษายังคงอยู่ด้านล่าง
0.20 มิลลิกรัม / ลิตร หรือ 2 เปอร์เซ็นต์ ตลอดระยะเวลาการจัดเก็บข้อมูลหลังจากวันที่ 5จบช่วงกระเป๋า เพราะมีการสูญเสียในสุญญากาศการซึมผ่านฟิล์มบรรจุภัณฑ์และแก๊ส
การซึมผ่านของก๊าซผ่าน
ฟิล์มบรรจุภัณฑ์ที่เกิดขึ้นเพราะมีอัตราการส่งของ O2
3 – 6 cm3
/ m2
1 ตู้ 24 ชม. ที่ 4.4 ° C และความชื้นสัมพัทธ์ 0 . เนื่องจาก O2
ละลายความเข้มข้นในการศึกษายังคงอยู่ด้านล่าง
0.20 มิลลิกรัม / ลิตร หรือ 2 เปอร์เซ็นต์ ตลอดระยะเวลาการจัดเก็บข้อมูลหลังจากวันที่ 5มันสอดคล้องกับวรรณกรรมที่ความเข้มข้น O2
ในแพคเกจสูญญากาศยังคงประมาณ 1% หลังจากที่ปิดผนึก ( งดงาม& Mackey , 1992 ) .
ผลการทดลองเหล่านี้แสดงให้เห็นว่าการเน่าเสีย
แบคทีเรียในสูญญากาศบรรจุเนื้อหมูเพิ่มปริมาณ CO2 และ O2 ละลาย
ลดความเข้มข้น ละลาย CO2 ความเข้มข้น
การเน่าเสียของบรรดาสูญญากาศบรรจุเนื้อหมู เพราะพวกเขามีประชากรจุลินทรีย์สูงสุด
ตลอดระยะเวลาที่เก็บ ทั้งแกน หรือการกำจัด หลังจาก Lab , ผิดเพี้ยนได้สูงสุด 2
ประชากรและยังสนับสนุนการเน่าเสีย แต่ไม่ได้ครอง
เน่าเสีย ฟลอร่า B . thermosphacta ยังก่อให้เกิดการเน่าเสีย แต่พวกเขา
เพิ่มขึ้นเนื่องจากการเพิ่มความเข้มข้นของ CO2 ที่แล็บผลิต
เป็นการเผาผลาญโดย ( hammes &เฮอร์เทิล , 2006 ) การเพิ่มความเข้มข้นและลดเชื้อแบคทีเรียที่ทำให้เกิดการเน่าเสีย
ละลายออกซิเจนความเข้มข้นเพราะการเพิ่มอัตราการหายใจของเซลล์เกิดขึ้น
( งดงาม& Mackey , 1992 ) ผลลัพธ์เหล่านี้ยังพบว่าครอง
แล็บยังไม่ได้ครองเพราะพวกเขามีประชากรน้อยที่สุดในบรรดา
แบคทีเรียประเภทวัด
การแปล กรุณารอสักครู่..
