Particles in urban areas represent one of the most significant atmospheric pollution
problems, and are responsible for decreased visibility and other effects on public health, particularly when their aerodynamic diameters are smaller than 10 µm, because these small particles can penetrate deep into the human respiratory tract. There have been many studies measuring concentrations of toxic metals such as Ag, As, Cd, Cr, Cu, Hg, Ni, Pb in rainwater and their deposition into surface waters and on soils. Natural sources of aerosols include terrestrial dust, marine aerosols, volcanic emissions and forest fires. Anthropogenic particles, on the other hand, are created by industrial processes, fossil fuel combustion, automobile mufflers, worn engine parts, and corrosion of metallic parts. The presence of metals in atmospheric particles and the associated health risks of these metals. Anthropogenic sources have substantially increased trace metal concentrations in atmospheric deposition. In addition, acid precipitation favors the dissolution of many trace metals, which enhances their bioavailability. Trace metals from the atmosphere are deposited by rain, snow and dry fallout. The predominant processes of deposition by rain are rainout and washout (scavenging). Generally, in over 80 % of wet precipitation, heavy metals are dissolved in rainwater and can thus reach and be taken up by the vegetation blanket and soils. Light of a specific wavelength, selected appropriately for the element being analyzed, is given off when the metal is ionized in the flame; the absorption of this light by the element of interest is proportional to the concentration of that element. Quantification is achieved by preparing standards of the element.
• AAS intrinsically more sensitive than Atomic Emission Spectrometry (AES)
• Similar atomization techniques to AES
• Addition of radiation source
• High temperature for atomization necessary
• Flame and electrothermal atomization
• Very high temperature for excitation not necessary; generally no plasma/arc/spark in
AAS
3. Flame (AAS)
Flame atomic absorption methods are referred to as direct aspiration determinations. They are normally completed as single element analyses and are relatively free of interelement
Particles in urban areas represent one of the most significant atmospheric pollutionproblems, and are responsible for decreased visibility and other effects on public health, particularly when their aerodynamic diameters are smaller than 10 µm, because these small particles can penetrate deep into the human respiratory tract. There have been many studies measuring concentrations of toxic metals such as Ag, As, Cd, Cr, Cu, Hg, Ni, Pb in rainwater and their deposition into surface waters and on soils. Natural sources of aerosols include terrestrial dust, marine aerosols, volcanic emissions and forest fires. Anthropogenic particles, on the other hand, are created by industrial processes, fossil fuel combustion, automobile mufflers, worn engine parts, and corrosion of metallic parts. The presence of metals in atmospheric particles and the associated health risks of these metals. Anthropogenic sources have substantially increased trace metal concentrations in atmospheric deposition. In addition, acid precipitation favors the dissolution of many trace metals, which enhances their bioavailability. Trace metals from the atmosphere are deposited by rain, snow and dry fallout. The predominant processes of deposition by rain are rainout and washout (scavenging). Generally, in over 80 % of wet precipitation, heavy metals are dissolved in rainwater and can thus reach and be taken up by the vegetation blanket and soils. Light of a specific wavelength, selected appropriately for the element being analyzed, is given off when the metal is ionized in the flame; the absorption of this light by the element of interest is proportional to the concentration of that element. Quantification is achieved by preparing standards of the element.• AAS intrinsically more sensitive than Atomic Emission Spectrometry (AES)• Similar atomization techniques to AES• Addition of radiation source• High temperature for atomization necessary• Flame and electrothermal atomization• Very high temperature for excitation not necessary; generally no plasma/arc/spark inAAS3. Flame (AAS)Flame atomic absorption methods are referred to as direct aspiration determinations. They are normally completed as single element analyses and are relatively free of interelement
การแปล กรุณารอสักครู่..