And I can repeat that. So we stop the transmission of the video and energy harvesting stops as well. So that is to show that the solar cell acts as a receiver.
05:07
But now imagine that this LED lamp is a street light, and there's fog. And so I want to simulate fog, and that's why I brought a handkerchief with me.
05:18
(Laughter)
05:19
And let me put the handkerchief over the solar cell. First you notice the energy harvested drops, as expected, but now the video still continues. This means, despite the blockage, there's sufficient light coming through the handkerchief to the solar cell, so that the solar cell is able to decode and stream that information, in this case, a high-definition video.
05:50
What's really important here is that a solar cell has become a receiver for high-speed wireless signals encoded in light, while it maintains its primary function as an energy-harvesting device. That's why it is possible to use existing solar cells on the roof of a hut to act as a broadband receiver from a laser station on a close by hill, or indeed, lamp post.
06:18
And It really doesn't matter where the beam hits the solar cell. And the same is true for translucent solar cells integrated into windows, solar cells integrated into street furniture, or indeed, solar cells integrated into these billions of devices that will form the Internet of Things. Because simply, we don't want to charge these devices regularly, or worse, replace the batteries every few months.
06:45
As I said to you, this is the first time I've shown this in public. It's very much a lab demonstration, a prototype. But my team and I are confident that we can take this to market within the next two to three years. And we hope we will be able to contribute to closing the digital divide, and also contribute to connecting all these billions of devices to the Internet. And all of this without causing a massive explosion of energy consumption -- because of the solar cells, quite the opposite.
07:15
Thank you.