Glycolysis, occurs, at least in part, in almost every living cell. This series of reactions is believed to be among the oldest of all the biochemical pathways. Both the enzymes and the number and mechanisms of the steps in the pathway are highly conserved in prokaryotes and eukaryotes. Also, glycolysis is an anaerobic process, which would have been necessary in the oxygen-poor atmosphere of pre-eukaryotic Earth. In glycolysis, also referred to as the Embden-Meyerhof-Parnas pathway, each glucose molecule is split and converted to two three-carbon units (pyruvate). During this process several carbon atoms are oxidized. The small amount of energy captured during glycolytic reactions (about 5% of the total available) is stored temporarily in two molecules each of ATP and NADH (the reduced form of the coenzyme NAD+). The subsequent metabolic fate of pyruvate depends on the organism being considered and its metabolic circumstances. In anaerobic organisms