Figure 4. Aminoguanadine (AG), a structurally identified AGE inhibitor.
Figure 4. Aminoguanadine (AG), a structurally identified AGE inhibitor.
.
AGE inhibitors
Due to detrimental effects of AGEs, researchers attempt to find inhibitors of the advanced glycation process (6).Brownlee et al. suggest that optimal future therapies to minimize tissue damage may require pharmacologic agents that directly interfere with the self-perpetuating component of hyperglycemia-initiated tissue damage (4). Aminoguanadine (AG) (see Figure 4), an inhibitor of advanced glycation reactions in vitro, has been found to inhibit the development of diabetic complications in animal models of diabetes. (4, 12). Booth et al. suggest that these inhibitors can potentially react as a hydrazine with carbonyls of Amadori intermediates or can hunt for reactive dicarbonyls through its guanidinium moiety. However, the mechanism of AGE formation is only partially understood, making it difficult to identify the precise chemical products responsible for in vivo damage and thus impede the development of specific inhibitors.