The amendment of vermicompost is a management practice that may contribute to sustainable agroecosystems
by making them less dependent on inorganic fertilizers. However, little is known about the
impact of this practice on soil biota and the flow of microbes to the water system. Using a 30-days
laboratory experiment, we investigated the development of the peregrine earthworm species,
Dichogaster bolaui, in presence of compost or vermicompost, and assessed its impact on the flow of
bacteria and viruses to the water system. The dynamics of soil bacterial diversity (assessed by DGGE) and
concentration in water together with their viral parasites were also assessed through an incubation of
solution during 5 days (comparison between T0 and T5).
This study highlights the rapid development of D. bolaui after compost amendment. However, the low
quality of vermicompost and the absence of organic amendment in the control treatment allowed the
survival but not the development of D. bolaui. Higher bacterial and viral abundances in compost and
vermicompost substrates led to more important transfer of these communities from the soil to the water
system in comparison with the untreated soil, but no difference was observed between compost and
vermicompost treatments. In terms of abundance, the bacterial to virus ratio was rather stable in the soil
solution but no such a relation was observed in the soil. A reduction of bacterial diversity (OTU) was
measured at the end of the incubation period for all the treatments. However, higher number of OTU at
T5 for the compost treatment suggested a better adaptation and/or resistance of soil bacteria to the
aquatic system, in comparison with the control treatment. Vermicompost treatment led to intermediate
conclusions. The presence of D. bolaui significantly reduced bacterial abundance in the soil organic layer
(both compost and vermicompost treatments) but it did not influence bacterial and viral abundance in
water, suggesting independent processes. Earthworms buffered bacterial DGGE patterns after five days of
incubation, probably through a facilitation of soil bacterial groups more able to resist in solution.