An enzyme catalyses the conversion of one or several
substrates to one or several products. The rate of the
catalysed reaction or the activity of the enzyme can be
determined by measuring either the decrease in substrate
concentration or the increase in product concentration as
a function of the reaction time. When the substrate (S)
and the product (P) differ in absorbance, the progress
of an enzymatic reaction can be followed directly by
monitoring the change in absorbance as a function of time.
The absorbance changes are linearly related with the
changes in concentration (via the Lambert–Beer relation,
see eqn [2]) and therefore the reaction rates (d[P]/dt or
2 d[S]/dt) can be calculated directly from the absorbance
data when the absorption coefficients of the reacting
species are known. NADH-linked enzyme reactions,
such as those catalysed by the lactate, malate or alcohol
dehydrogenases provide excellent examples for absorbance-based
enzyme assays. The reduced nicotinamide
ring in NADH shows an absorbance maximum near
340 nm (e340 5 6220 L mol 2 1 cm 2 1
), which is lost upon
oxidation to NAD 1 . Thus the activities of these dehydrogenases
can be measured directly by following the
decrease in A340 as a function of time.
When no absorbance changes occur during the reaction
of an enzyme with its natural substrate, often coloured
derivatives can be synthesized with chromophoric reporter
groups. A commonly used reporter is 4-nitrophenolate,
which absorbs near 400 nm. This group can be esterified
with acetic acid in 4-nitrophenyl acetate (to serve as a
substrate for proteases), with phosphate (as a substrate for
phosphatases) or with sugars (to probe amylases or
glycosidases).
In favourable cases a ‘silent’ enzyme reaction with a
colourless product can be coupled with another enzyme
reaction that uses the product of the first enzymatic
reaction for a conversion that leads to a change in
absorbance. Often such silent reactions are coupled to an
NADH-consuming or NADH-producing step. As outlined
above, changes in NADH concentration are easily
followed by the strong change in absorbance at 340 nm. It
is, of course, essential that in such coupled enzyme assays
the rate of the indicator reaction is much higher than the
rate of the primary reaction. This is usually achieved by
using the indicator enzyme in a high conc
An enzyme catalyses the conversion of one or severalsubstrates to one or several products. The rate of thecatalysed reaction or the activity of the enzyme can bedetermined by measuring either the decrease in substrateconcentration or the increase in product concentration asa function of the reaction time. When the substrate (S)and the product (P) differ in absorbance, the progressof an enzymatic reaction can be followed directly bymonitoring the change in absorbance as a function of time.The absorbance changes are linearly related with thechanges in concentration (via the Lambert–Beer relation,see eqn [2]) and therefore the reaction rates (d[P]/dt or2 d[S]/dt) can be calculated directly from the absorbancedata when the absorption coefficients of the reactingspecies are known. NADH-linked enzyme reactions,such as those catalysed by the lactate, malate or alcoholdehydrogenases provide excellent examples for absorbance-basedenzyme assays. The reduced nicotinamidering in NADH shows an absorbance maximum near340 nm (e340 5 6220 L mol 2 1 cm 2 1), which is lost uponoxidation to NAD 1 . Thus the activities of these dehydrogenasescan be measured directly by following thedecrease in A340 as a function of time.When no absorbance changes occur during the reactionof an enzyme with its natural substrate, often colouredderivatives can be synthesized with chromophoric reportergroups. A commonly used reporter is 4-nitrophenolate,ซึ่งดูดซับใกล้ 400 nm สามารถ esterified กลุ่มนี้มีกรดอะซิติกใน 4 nitrophenyl อะซิเตท (เป็นการพื้นผิวโปรตีเอส), ฟอสเฟต (เป็น substrate สำหรับphosphatases) หรือน้ำตาล (หยั่ง amylases หรือglycosidases)ในดีกรณีปฏิกิริยาเอนไซม์ 'เงียบ' กับการผลิตภัณฑ์สีใสสามารถคู่กับเอนไซม์อื่นปฏิกิริยาที่ผลิตภัณฑ์แรกใช้เอนไซม์สำหรับการแปลงที่นำไปสู่การเปลี่ยนแปลงในปฏิกิริยาค่า มักปฏิกิริยาดังกล่าวเงียบอยู่ควบคู่กับการขั้นตอนที่ใช้ NADH หรือผลิต NADH ตามที่ระบุไว้ข้างต้น การเปลี่ยนแปลงในความเข้มข้นของ NADH ได้อย่างง่ายดายตาม ด้วยการเปลี่ยนแปลงแข็งแรงค่าที่ 340 nm มันมี แน่นอน ความสำคัญว่า ในคู่ assays เอนไซม์อัตราของปฏิกิริยาไฟจะสูงกว่าการอัตราของปฏิกิริยาหลัก นี้มักจะทำได้โดยใช้เอนไซม์ตัวบ่งชี้ในการสสูง
การแปล กรุณารอสักครู่..
