When a system (be it a molecule or atom) absorbs a photon, it gains energy and enters an excited state. One way for the system to relax is to emit a photon, thus losing its energy (another method would be the loss of heat energy). When the emitted photon has less energy than the absorbed photon, this energy difference is the Stokes shift. If the emitted photon has more energy, the energy difference is called an anti-Stokes shift;[5] this extra energy comes from dissipation of thermal phonons in a crystal lattice, cooling the crystal in the process. Yttrium oxysulfide doped with gadolinium oxysulfide is a common industrial anti-Stokes pigment, absorbing in the near-infrared and emitting in the visible portion of the spectrum. Photon upconversion is another anti-Stokes process. The Stokes shift is the result of two actions: Vibrational relaxation or dissipation and solvent reorganisation. A fluorophore is a dipole, surrounded by water molecules. When a fluorophore enters an excited state, its dipole moment will change, but water molecules will not be able to adapt this quickly. Only after vibrational relaxation, there will be a reallignment of their dipole moments.