5.2 Ecological systems
In terrestrial ecosystems, the earlier timing of spring events, and poleward and upward shifts in plant and animal ranges, have been linked with high confidence to recent warming. Future climate change is expected to particularly affect certain ecosystems, including tundra, mangroves, and coral reefs. It is expected that most ecosystems will be affected by higher atmospheric CO2 levels, combined with higher global temperatures. Overall, it is expected that climate change will result in the extinction of many species and reduced diversity of ecosystems.
Increases in atmospheric CO2 concentrations have led to an increase in ocean acidity. Dissolved CO2 increases ocean acidity, which is measured by lower pH values. Between 1750 to 2000, surface-ocean pH has decreased by ≈0.1, from ≈8.2 to ≈8.1. Surface-ocean pH has probably not been below ≈8.1 during the past 2 million years. Projections suggest that surface-ocean pH could decrease by an additional 0.3–0.4 units by 2100. Future ocean acidification could threaten coral reefs, fisheries, protected species, and other natural resources of value to society.
5.3 Long-term effects
On the timescale of centuries to millennia, the magnitude of global warming will be determined primarily by anthropogenic CO2 emissions. This is due to carbon dioxide's very long lifetime in the atmosphere.
Stabilizing global average temperature would require reductions in anthropogenic CO2 emissions. Reductions in emissions of non-CO2 anthropogenic greenhouse gases (GHGs) (e.g., methane and nitrous oxide) would also be necessary. For CO2, anthropogenic emissions would need to be reduced by more than 80% relative to their peak level. Even if this were to be achieved, global average temperatures would remain close to their highest level for many centuries.
5.4 Large-scale and abrupt impacts
Climate change could result in global, large-scale changes in natural and social systems. Two examples are ocean acidification caused by increased atmospheric concentrations of carbon dioxide, and the long-term melting of ice sheets, which contributes to sea level rise.
Some large-scale changes could occur abruptly, i.e., over a short time period, and might also be irreversible. An example of abrupt climate change is the rapid release of methane and carbon dioxide from permafrost, which would lead to amplified global warming. Scientific understanding of abrupt climate change is generally poor. The probability of abrupt change for some climate related feedbacks may be low. Factors that may increase the probability of abrupt climate change include higher magnitudes of global warming, warming that occurs more rapidly, and warming that is sustained over longer time periods.
Observed and expected effects on social systems
Further information: Effects of global warming § Social systems and Regional effects of global warming § Regional impacts
The effects of climate change on human systems, mostly due to warming or shifts in precipitation patterns, or both, have been detected worldwide. Production of wheat and maize globally has been impacted by climate change. While crop production has increased in some mid-latitude regions such as the UK and Northeast China, economic losses due to extreme weather events have increased globally. There has been a shift from cold- to heat-related mortality in some regions as a result of warming. Livelihoods of indigenous peoples of the Arctic have been altered by climate change, and there is emerging evidence of climate change impacts on livelihoods of indigenous peoples in other regions. Regional impacts of climate change are now observable at more locations than before, on all continents and across ocean regions.
The future social impacts of climate change will be uneven. Many risks are expected to increase with higher magnitudes of global warming. All regions are at risk of experiencing negative impacts. Low-latitude, less developed areas face the greatest risk.[171] Examples of impacts include:
• Food: Crop production will probably be negatively affected in low latitude countries, while effects at northern latitudes may be positive or negative. Global warming of around 4.6 °C relative to pre-industrial levels could pose a large risk to global and regional food security.
• Health: Generally impacts will be more negative than positive. Impacts include: the effects of extreme weather, leading to injury and loss of life; and indirect effects, such as undernutrition brought on by crop failures.