An exciting future for songbird biological studies
As a result of the pioneering efforts of the consortium and in addition to the sequencing and annotation of the genome, an array of publicly available resources and tools has been developed for songbird studies. These include normalized and subtracted cDNA libraries and bacterial artificial chromosome libraries, a largely complete set of annotated expressed sequence tags, and a microarray platform . Such tools have enabled multiple research groups, independently and in collaboration, to systematically study the functional organization of the songbird brain and its genomic response to a variety of conditions, including sensory experience, hormonal manipulations and sensory-motor learning. The outcomes of this research have been blossoming into exciting recent advances, including, but not limited to, insights into the estradiol-synthetic pathway and the repertoire of proteases (the 'degradome') and the collection of neuropeptide prohormones and their processed peptides (the neuropeptidome) . These efforts have revealed key information on genes related to steroid receptors and estrogen biosynthesis , as well as insights into how proteases may shape neuronal functional, immunological and developmental processes , as well as the identity and expression patterns of an array of neuropeptides thought to be involved in the development and functionality of brain circuits involved in vocal communication .
Over the next few years these efforts will contribute to an integrative understanding of how the songbird genomic machinery responds to environmental and physiological challenges and, more broadly, how the songbird brain is functionally organized. In addition, active research in these areas is expected to shed light on basic biological and evolutionary principles in vertebrates. The importance of a complete understanding of the songbird transcriptome is highlighted by ongoing, contiguous research ventures aimed at creating a songbird gene expression brain atlas. Finally, the study of songbird biology is reaching an exciting era with the convergence of the genomic resources detailed above and the successful development of transgenic zebra finches using a lentiviral-vector approach . This interface will provide a unique opportunity for songbird biologists to test causal relationships between the induction of gene expression programs, altered cellular physiology and their behavioral correlates.
Resources for exploring the sequence and annotation data are available on browser displays at UCSC, Ensembl and the NCBI and at .
An exciting future for songbird biological studiesAs a result of the pioneering efforts of the consortium and in addition to the sequencing and annotation of the genome, an array of publicly available resources and tools has been developed for songbird studies. These include normalized and subtracted cDNA libraries and bacterial artificial chromosome libraries, a largely complete set of annotated expressed sequence tags, and a microarray platform . Such tools have enabled multiple research groups, independently and in collaboration, to systematically study the functional organization of the songbird brain and its genomic response to a variety of conditions, including sensory experience, hormonal manipulations and sensory-motor learning. The outcomes of this research have been blossoming into exciting recent advances, including, but not limited to, insights into the estradiol-synthetic pathway and the repertoire of proteases (the 'degradome') and the collection of neuropeptide prohormones and their processed peptides (the neuropeptidome) . These efforts have revealed key information on genes related to steroid receptors and estrogen biosynthesis , as well as insights into how proteases may shape neuronal functional, immunological and developmental processes , as well as the identity and expression patterns of an array of neuropeptides thought to be involved in the development and functionality of brain circuits involved in vocal communication .Over the next few years these efforts will contribute to an integrative understanding of how the songbird genomic machinery responds to environmental and physiological challenges and, more broadly, how the songbird brain is functionally organized. In addition, active research in these areas is expected to shed light on basic biological and evolutionary principles in vertebrates. The importance of a complete understanding of the songbird transcriptome is highlighted by ongoing, contiguous research ventures aimed at creating a songbird gene expression brain atlas. Finally, the study of songbird biology is reaching an exciting era with the convergence of the genomic resources detailed above and the successful development of transgenic zebra finches using a lentiviral-vector approach . This interface will provide a unique opportunity for songbird biologists to test causal relationships between the induction of gene expression programs, altered cellular physiology and their behavioral correlates.
Resources for exploring the sequence and annotation data are available on browser displays at UCSC, Ensembl and the NCBI and at .
การแปล กรุณารอสักครู่..