This chapter provides an overview of the theory underlying LDA (Latent Dirichlet Allocation), the most popular topic-analysis method today. Next it illustrates, with a brief tutorial introduction, how to employ LDA on a textual data set. Third, it reviews the software-engineering literature for uses of LDA for analyzing textual software-development assets, in order to support developers’ activities. Finally, we discuss the interpretability of the automatically extracted topics, and their correlation with tags provided by subject-matter experts.