Our algorithm is “query-aware” as it takes into account the query execution cost at a database server and the query quality, i.e., the number of objects returned to users by the database server, during the location anonymization process. In particular,we develop a new cost function that balances between the query execution cost and the query quality. Then, we introduce two versions of our algorithm, namely,puregreedy and randomized greedy, that aim to minimize the developed cost function and satisfy the user specified privacy requirements. To accommodate intervals with a high workload, we introduce a shared execution paradigm that boosts the scalability of our location anonymization algorithm and the database server to support large numbers of queries received in a short time period. Extensive experimental results show that.