Samples obtained from crime scenes or paternity investigations are subjected to defined processes involving biology, technology, and genetics.
Biology
Following collection of biological material from a crime scene or paternity investigation, the DNA is first extracted from its biological source material and then measured to evaluate the quantity of DNA recovered. After isolating the DNA from its cells, specific regions are copied with a technique known as the polymerase chain reaction, or PCR. PCR produces millions of copies for each DNA segment of interest and thus permits very minute amounts of DNA to be examined. Multiple STR regions can be examined simultaneously to increase the informativeness of the DNA test.
Technology
The resulting PCR products are then separated and detected in order to characterize the STR region being examined. The separation methods used today include slab gel and capillary electrophoresis (CE). Fluorescence detection methods have greatly aided the sensitivity and ease of measuring PCR-amplified STR alleles. After detecting the STR alleles, the number of repeats in a DNA sequence is determined, a process known as sample genotyping.
The specific methods used for DNA typing are validated by individual laboratories to ensure that reliable results are obtained and before new technologies are implemented. DNA databases, such as the one described earlier in this chapter to match Montaret Davis to his crime scene, are valuable tools and will continue to play an important role in law enforcement efforts.
Genetics
The resulting DNA profile for a sample, which is a combination of individual STR genotypes, is compared to other samples. In the case of a forensic investigation, these other samples would include known reference samples such as the victim or suspects that are compared to the crime scene evidence. With paternity investigations, a child's genotype would be compared to his or her mother's and the alleged father(s) under investigation. If there is not a match between the questioned sample and the known sample, then the samples may be considered to have originated from different sources. The term used for failure to match between two DNA profiles is 'exclusion.'
If a match or 'inclusion' results, then a comparison of the DNA profile is made to a population database, which is a collection of DNA profiles obtained from unrelated individuals of a particular ethnic group. For example, due to genetic variation between the groups, African-Americans and Caucasians have different population databases for comparison purposes.
Finally a case report or paternity test result is generated. This report typically includes the random match probability for the match in question. This random match probability is the chance that a randomly selected individual from a population will have an identical STR profile or combination of genotypes at the DNA markers tested.