Topotecan (TPT) is a semisynthetic, water soluble analog of the plant alkaloid camptothecin which has been widely used for the treatment of ovarian and cervical cancers. To obtain better understanding on howit can affect DNA structure, electrochemical biosensor platforms for the investigation of TPT-double stranded DNA (dsDNA) interaction were developed for the first time in this study. The electrochemical detection of TPT, and TPT– dsDNA interactionwere investigated at the surface of pencil graphite electrodes (PGEs) and single-walled carbon nanotube (SWCNT) modified PGEs by using differential pulse voltammetry (DPV). The changes at the oxidation signals of TPT and guaninewere evaluated before/after each modification/immobilization step. An enhanced sensor response was obtained by using SWCNT–PGEs compared to unmodified PGEs with resulting limits of detection (LODs) for TPT as 0.51 μg/mL, 0.45 μg/mL, 0.37 μg/mL (130 pmol, 117 pmol, 96.5 pmol in a 110 μL sample, respectively) by using electrochemically pretreated PGE, unmodified PGE and SWCNT modified PGE. In addition,
electrochemical impedance spectroscopy (EIS)measurementswere performed for the purpose ofmodification of PGEs by using SWCNTs and the interaction process at the surface of SWCNT–PGEs by evaluating the changes at the charge transfer resistance (Rct).