Therefore, cloud stabilization of fruit juices can be
achieved by increasing the fine cloud content using homogenizer
or by raising the viscosity of the surrounding solution
(Genovese and Lozano 2006; Sinchaipanit and Kerr
2007). Additionally, cloud stabilization could also be
achieved by inactivation of pectinase enzymes. Ahmad and
Bhatti (1971a) proposed that neither pasteurization nor
homogenization is effective in preventing cloud loss separately.
Ahmad and Bhatti (1971b) further reported that the
combination of pasteurization coupled with incorporation
of stabilizers such as pectin and hydrocolloid acacia
improved the stability of both juices and concentrates.
Cloud stabilizing effect could be achieved by the addition of
certain hydrocolloids such as carboxymethyl cellulose
(CMC), guar gum, sodium alginate (SA), pectin, gum acacia
and gum tragacanth (Glicksman 1982). Hydrocolloids
impart cloud stability by two mechanisms: (1) increasing
the viscosity of the juice (Chulin et al. 2006) and (2) possible
complexing of charged protein particles of the cloud
with the hydrocolloid (Yamasaki et al. 1967). The homogenous
distribution of cloud without significant clarification
of the upper part of the juice during storage is decisive for
consumer acceptability of cloudy juices (Beveridge 2002).
The importance of hydrocolloids (hydrophilic colloids), as
the name suggests, is their hydrophilic or “water loving”
properties. In colloidal suspensions, liquid absorption and
consequent swelling of the dispersed colloid result in liquid
phase thickening, thereby increasing viscosity. This thickening
or viscosity-producing effect of hydrocolloid in juices is
responsible for suspension of solid particles (Saha and
Bhattacharya 2010). The protective colloid acts as a bridge
between the continuous and dispersed phase, thereby stabilizing
the suspension (Glicksman 1969). Studies have been
conducted in the past to evaluate the effect of addition of
hydrocolloids in many juices (Corredig et al. 2001; Aggarwal
and Sandhu 2004; Qin et al. 2005), but there is scanty literature
available reporting the effect of hydrocolloids on cloud stabilization in litchi juice. Therefore, the major objectives
of this study were to evaluate the effect of addition of
hydrocolloids on cloud stability and physicochemical properties
of litchi juice during storage.
ดังนั้นการรักษาเสถียรภาพระบบคลาวด์ของน้ำผลไม้ที่สามารถประสบความสำเร็จโดยการเพิ่มเนื้อหาปรับใช้ระบบคลาวด์โฮโมจีไนหรือโดยการเพิ่มความหนืดของการแก้ปัญหาโดยรอบ( 2007) นอกจากนี้การรักษาเสถียรภาพเมฆก็อาจจะทำได้โดยการยับยั้งเอนไซม์เพคติเนสของ อาห์หมัดและBhatti (1971a) เสนอว่าพาสเจอร์ไรซ์มิได้เป็นเนื้อเดียวกันมีประสิทธิภาพในการป้องกันการสูญเสียเมฆแยกต่างหากอาหมัดและ ต่อรายงานว่าการรวมกันของพาสเจอร์ไรซ์ควบคู่กับการรวมตัวกันของความคงตัวเช่นเพคตินและกระถินไฮดีขึ้นความมั่นคงของน้ำผลไม้ทั้งสองและมุ่งเน้นเมฆรักษาเสถียรภาพของผลกระทบที่อาจจะเกิดจากการเพิ่มขึ้นของไฮโดรคอลลอยด์บางอย่างเช่นคาร์บอกซีเซลลูโลส(เพคตินกระถินเหงือกและtragacanth Therefore, cloud stabilization of fruit juices can be
achieved by increasing the fine cloud content using homogenizer
or by raising the viscosity of the surrounding solution
(Genovese and Lozano 2006; Sinchaipanit and Kerr
2007). Additionally, cloud stabilization could also be
achieved by inactivation of pectinase enzymes. Ahmad and
Bhatti (1971a) proposed that neither pasteurization nor
homogenization is effective in preventing cloud loss separately.
Ahmad and Bhatti (1971b) further reported that the
combination of pasteurization coupled with incorporation
of stabilizers such as pectin and hydrocolloid acacia
improved the stability of both juices and concentrates.
Cloud stabilizing effect could be achieved by the addition of
certain hydrocolloids such as carboxymethyl cellulose
(CMC), guar gum, sodium alginate (SA), pectin, gum acacia
and gum tragacanth (Glicksman 1982). Hydrocolloids
impart cloud stability by two mechanisms: (1) increasing
the viscosity of the juice (Chulin et al. 2006) and (2) possible
complexing of charged protein particles of the cloud
with the hydrocolloid (Yamasaki et al. 1967). The homogenous
distribution of cloud without significant clarification
of the upper part of the juice during storage is decisive for
consumer acceptability of cloudy juices (Beveridge 2002).
The importance of hydrocolloids (hydrophilic colloids), as
the name suggests, is their hydrophilic or “water loving”
properties. In colloidal suspensions, liquid absorption and
consequent swelling of the dispersed colloid result in liquid
phase thickening, thereby increasing viscosity. This thickening
or viscosity-producing effect of hydrocolloid in juices is
responsible for suspension of solid particles (Saha and
Bhattacharya 2010). The protective colloid acts as a bridge
between the continuous and dispersed phase, thereby stabilizing
the suspension (Glicksman 1969). Studies have been
conducted in the past to evaluate the effect of addition of
hydrocolloids in many juices (Corredig et al. 2001; Aggarwal
and Sandhu 2004; Qin et al. 2005), but there is scanty literature
available reporting the effect of hydrocolloids on cloud stabilization in litchi juice. Therefore, the major objectives
of this study were to evaluate the effect of addition of
hydrocolloids on cloud stability and physicochemical properties
of litchi juice during storage.
การแปล กรุณารอสักครู่..
