2. COMPARISON OF STORAGE TECHNIQUES
It has been widely reported that hydrogen will be the fuel of the future, because its abundance on earth, it burns cleanly with water being the only byproduct, and it contains the highest energy on a weight basis. In reality, hydrogen is only a fuel carrier and energy is required to produce elemental hydrogen. In addition, hydrogen contains very small amount of energy on a volume basis, and volume counts the most when fuel is stored and transported. From the point when hydrogen is produced to the point when hydrogen is converted to work, energy consumed instorage, transport and other must be at a minimum to maximize the energy carried to do work. Storage is probably the most important step in this process.
Present storage techniques for hydrogen include compressed gas, cryogenic liquid and absorbed solid (metal hydride and other). To store hydrogen as compressed gas energy must be consumed to reach the high pressure. Compressing hydrogen requires significant amount of energy. To obtain a reasonable estimate, one may use the adiabatic compression equation2 and add the efficiencies of the electric generator and the compressor. The plot in Figure 1 is constructed by using this equation, and by assuming that fuel cell produces the electricity at 60% efficiency to run a compressor at an efficiency of 85%. This plot shows that compressing hydrogen to 5,000 psi (340 atm) and 10,000 (680 atm) will require 36 MJ/kg and 47 MJ/kg. These correspond to 30 and 40% of the low heat value (LHV) of hydrogen. Storing hydrogen as a compressed gas is quite energy intensive.
To store hydrogen as a liquid, the energy required to cool hydrogen to the liquid state is critical. Theoretical heat to cool hydrogen from 25 oC to 20 oK and condense it to liquid is about 3.4 MJ/kg (2.94 sensible and 0.45 condensation). But the actual required energy is much higher due to the inefficiency of refrigeration at the extremely low temperature. The minimum required energy may be calculated using an ideal refrigeration cycle, the reversed Carnot cycle3. The efficiency of this cycle depends on the temperatures at which heat is added and rejected, and is equal to T1/(T2-T1), where T1=evaporator temperature=20 oK, T2=condensing temperature=298 oK. Therefore the efficiency in our case is 20/(298-20)=7.2%. To generate 3.4 MJ to liquefy one kg of hydrogen will require 47 MJ (3.4/0.072=47). This is 39.2% of the LHV. The actual required energy can be significantly more because the refrigeration cycle will be less than ideal. Heat will also be required to evaporate the liquid and warm up the gas before feeding it to the energy conversion device such as a fuel cell. This may require an additional of 3.4 MJ/kg. This makes the total required energy to store hydrogen as a liquid to be 50.4 MJ/kg. This is 42% of the low heat value of hydrogen. Liquid hydrogen storage is as energy intensive as the compressed hydrogen.
Using metal hydride to store hydrogen requires an absorption step and a desorption step. A typical absorption step requires a supply of 20-atm hydrogen and the removal of about 7 kcal/mol (14.6 MJ/kg) heat of absorption. It has been shown in Figure 1 that energy needed to compress hydrogen to 20 atm is about 12 MJ/kg (10% of LHV). The heat of absorption is removed by coolant at temperatures of about 10 oC. At this temperature the coefficient of performance of a cooling system is about five4. The energy required for the cooling will be
2. COMPARISON OF STORAGE TECHNIQUESIt has been widely reported that hydrogen will be the fuel of the future, because its abundance on earth, it burns cleanly with water being the only byproduct, and it contains the highest energy on a weight basis. In reality, hydrogen is only a fuel carrier and energy is required to produce elemental hydrogen. In addition, hydrogen contains very small amount of energy on a volume basis, and volume counts the most when fuel is stored and transported. From the point when hydrogen is produced to the point when hydrogen is converted to work, energy consumed instorage, transport and other must be at a minimum to maximize the energy carried to do work. Storage is probably the most important step in this process.เทคนิคการจัดเก็บปัจจุบันสำหรับไฮโดรเจนรวมอัด อุณหภูมิของเหลว และของแข็งดูดซึม (ก้อนและอื่น ๆ) การเก็บไฮโดรเจนเป็นก๊าซอัด ต้องใช้พลังงานถึงแรงดันสูง อัดไฮโดรเจนต้องใช้พลังงานจำนวนมาก การขอรับการประเมินที่เหมาะสม หนึ่งอาจใช้ equation2 อัดการอะเดียแบติก และเพิ่มประสิทธิภาพของเครื่องกำเนิดไฟฟ้าและคอมเพรสเซอร์ พล็อตในรูปที่ 1 จะถูกสร้างขึ้น โดยใช้สมการนี้ และสมมติว่า เซลล์เชื้อเพลิงผลิตไฟฟ้าที่มีประสิทธิภาพ 60% การเรียกใช้คอมเพรสเซอร์ที่มีประสิทธิภาพ 85% พล็อตนี้แสดงว่าไฮโดรเจนอัดถึง 5,000 psi (340 atm) และ 10,000 (680 atm) จะต้องมี 36 MJ/kg และ 47 MJ/kg เหล่านี้สอดคล้องกับ 30 และ 40% ของค่าความร้อนต่ำ (LHV) ของไฮโดรเจน จัดเก็บไฮโดรเจนเป็นก๊าซอัดเป็นพลังงานค่อนข้างเข้มข้นมากในการจัดเก็บไฮโดรเจนเป็นของเหลว พลังงานที่ต้องใช้ไฮโดรเจนไปยังสถานะของเหลวเย็นร้าย ทฤษฎีความร้อนเย็นไฮโดรเจนจาก 25 oC 20 oK และควบแน่นเป็นของเหลวอยู่ประมาณ 3.4 MJ/kg (2.94 เหมาะสม และ 0.45 ควบแน่น) แต่พลังงานที่ต้องเกิดขึ้นจริงจะสูงเนื่องจากขาดประสิทธิภาพความเย็นที่อุณหภูมิต่ำมาก ขั้นต่ำต้องใช้พลังงานอาจคำนวณได้โดยใช้วงจรทำความเย็นที่เหมาะ cycle3 Carnot กลับรายการ ประสิทธิภาพของวงจรนี้ขึ้นอยู่อุณหภูมิที่ความร้อนจะเพิ่ม และ ปฏิเสธ และเท่ากับ T1/(T2-T1) ที่ T1 =อุณหภูมิระเหย = 20 oK, T2 =อุณหภูมิควบแน่น = 298 oK ดังนั้น ประสิทธิภาพในกรณีของเราคือ 20 /(298-20) = 7.2% สร้าง 3.4 MJ ไป liquefy หนึ่งกิโลกรัมของไฮโดรเจนจะต้อง MJ 47 (3.4/0.072=47) นี่คือ LHV 39.2% พลังงานที่ต้องจริงได้อย่างมากเนื่องจากวงจรทำความเย็นจะเหมาะกว่า ความร้อนจะยังต้องระเหยของเหลว และอุ่นก๊าซก่อนที่จะป้อนไปยังอุปกรณ์แปลงพลังงานเช่นเซลล์เชื้อเพลิง นี้อาจต้องเพิ่มเติมของ 3.4 MJ/kg ซึ่งทำให้พลังงานทั้งหมดที่จำเป็นในการจัดเก็บไฮโดรเจนเป็นของเหลวจะ 50.4 MJ/kg 42% ของค่าความร้อนต่ำของไฮโดรเจนได้ เก็บไฮโดรเจนเหลวเป็นพลังงานเข้มข้นมากเป็นไฮโดรเจนอัดใช้ก้อนเก็บไฮโดรเจนต้องมีขั้นตอนการดูดซึมและการคายออก ขั้นตอนการดูดซึมทั่วไปต้องมีอุปทานของไฮโดรเจน 20 atm และกำจัด 7 กิโลแคลอรี่/โมล (14.6 MJ/kg) ความร้อนของการดูดซึม มันแสดงในรูปที่ 1 พลังงานที่จำเป็นสำหรับการบีบอัดไฮโดรเจน 20 atm เป็น 12 MJ/kg (10% ของ LHV) ความร้อนของการดูดซึมจะถูกเอาออก โดยน้ำหล่อเย็นที่อุณหภูมิประมาณ 10 องศาเซลเซียส ที่อุณหภูมินี้ มีค่าสัมประสิทธิ์สมรรถนะของระบบทำความเย็นเกี่ยวกับ five4 พลังงานที่ต้องการระบายความร้อนจะ
การแปล กรุณารอสักครู่..
