There is utilized here the vibration peculiar to the bowl containing the machine parts with the addition of the other sections being supported by several springs as of iron pieces as a whole. In this case, the number of vibration of the solenoid as a driving source will take a fixed value dependently on the frequency of the power source, so that it is inevitable to decide the strength of the supporting springs in order that both the frequencies may be brought into accordance with each other in consideration of preventing the unbalance between the form and weight of the bowl and the weight of the attachments or the machine parts. What is more, the adjustment of the gap (air-gap) between the armature and the solenoid, and of the setting angle of the supporting springs governing the delivery velocity, and so on requires the one-piece job-like adroitness of very high grade. Accordingly, the adoptation of such a construction could not help being too much expensive conjointly with the use of the solenoid and related parts.
In the apparatus of such a construction, on the other hand, the delivery velocity of the machine parts comes to be dependent on the amplitude because of the definite and unchanging vibration of it. In case of the amplitude being too large, the articles which drift away from the delivery path can not keep in touch with the latter after once having run against it, as a result of which the movement becomes unstable, the efficiency drops, and the delivery velocity is restricted under a certain limit. In addition, as the amount of the articles put in the bowl changes, the number of vibration of its own nature fluctuates, giving rise to the unreasonableness attributable to the gap between itself and the frequency of the solenoid. Such was the fault of the apparatus of this kind which would also call forth the lowering in performance.