Stock structure
Common stock assessment techniques assume discrete populations. However management units are the result of political and administrative considerations and do not always match biological population structure. Although conserving fish stock structure is a critical aspect of preserving biodiversity, stock components are difficult to determine from traditional fisheries data (Stephenson and Kenchington 2000). Horizontal migration
Knowledge of fish movement is important because it has implications for stock structure. Knowledge about the movement of M. Capensis would help to tell us whether there are local substocks of M. Capensis in Namibia. The reasons for and patterns of horizontal migration of hakes in the northern Benguela, and their effects on distribution, are not well understood by science (von der Heyden et al. 2007). It is difficult to conduct tagging studies because hake seldom survive being brought on board from the deep water. In South Africa, both hake species migrate horizontally inshore and southwards (Payne 1995, Millar and Field 2002 cited in Gordoa et al. 2006) and it is assumed that hake migrate inshore to spawn (Gordoa et al. 2006). Namibian trawl and longline
skippers corroborate this assumption:
We see [the fish] got egg and it’s like red underneath and it’s been rubbing on the bottom. We know it’s moving to the inside, it’s going into the shallows to do its thing. We chase it. Coz we like those, we like those big, big fish.
Longline skipper Phil agrees:
When we know the fish has got eggs, doesn’t matter in the deep as well, then you know the fish is gonna go shallow. [. . .] If you lose the fish then, you know the fish got plenty eggs, then you try in the shallow waters.
Moreover, longline skipper Allan has observed that spawning fish end to be caught in concentrations and are not normally mixed with nonspawning fish. Because they move fast, they are difficult to catch. Both trawlers and longliners agree that big hake are on the move and do not stay long in an area. Trawler captain Luis explains:
If you get a school of very nice size hake it will last a day or two, at the most 3 days, then it’s gone.
Allan reports that hake movement exhibits different patterns in the south and in the north. In the south where the ground is much more varied, hake move in a circular pattern within particular areas and seem to stay within these areas, while on the northern longline grounds, they seem to move longer distances—16 to 32 km (10 to 20 miles) in one night. Allan says:
In the 21 degrees the fish tend to go into like a circle type thing, in 1 degree. [It’s] like the water rotates. In that area it will go from the shallows out to the deep and then back up again, but in like a northerly direction and back in; [the fish] move in a like, circle type move. And then come back; normally back to same place again. Why? I don’t know. It’s only here in the north; in the south it works completely different.
Hake trawler skippers have also observed a change in distribution of the catches. Luis reports:
We got to run further now for fish. Some areas haven’t seen fish for quite a while [. . . ]. So we’re passing through those areas without even wetting our nets.
Different types of M. capensis
Genetic information regarding the Namibian hake stocks is limited. Burmeister (2005) considers M. paradoxus to be a shared stock between Namibia and South Africa, whereas a study by von der Heyden et al. (2007) showed significant genetic differences between M. paradoxus in the two countries. According to the same study, M. capensis is genetically highly diverse, but no genetic differences between South Africa and Namibia were found. A previous study by Grant et al. (1987) suggested that the existence of separate stocks might be assumed for management purposes. Thus the limited genetic data available are somewhat ambiguous
(Grant et al. 1987) and require further research (von der Heyden et al. 2007). Namibian longline skippers differentiate between several types of M. capensis, which they refer to as “white” (or “silver”), “brown”, and “black” hake. Comparing the three types, skippers stated that black capensis is a long slender fish, whereas as Allan explains:
The white hake, the head is a bit smaller and [it is] a much bigger fish, more elongated and more heavier, [. . .] if you get a 60-centimeter fish, it will be at least half a kilo heavier. The brown hake? How would I say, how can
I say it now. It looks like a white hake, it’s just more dark in color and complexion. But it also got a nice weight to
it, very nice weight.
He further reports that white capensis has much bigger roe, “the size of a man’s hand”, than black capensis. The brown capensis has the same characteristics as the white capensis except for its slightly darker color; both are caught in the southern fishing area. The most preferred type is white capensis, but some skippers
consider brown capensis to be the very best quality. Allan and Carl describe a popular fishing area for longliners at “the Wall” at 29ฐS (Fig. 2): there, the sea bottom falls from a shallow 180-m plateau to a 550-m depth over 3 to 5 km (2 to 3 miles), forming a steep slope. Longliners report catching white capensis on the shallow parts and brown capensis on the deeper parts of the slope. North of Walvis Bay, only black capensis is caught.
Effort and efficiency increases
Fishers report that they make constant improvements in their fishing gear. In the trawl sector net openings have increased from 3.6 to 14.0 m. Trawl skipper Michael states:
The guys were only using the Spanish trawl. Now they are more versatile. [. . .] You get the smaller guys, who will get a 3.6-meter opening, our big vessels 4 meter. Now the guys is using 8-meter, 12-meter, you know, just to get more opening to get more fish in.
Table 2. Changes in fishing gear, from past to present.
Jim explains that the wider openings are used to make up for the decreased catchability during the night:
Like the normal bottom trawls we are working here is giving you only 4 meters. The semi-pelagic is giving you 14, 14 meters open. So [. . .] what we [do], actually, in the nighttime we switch over to the semi-pelagic, so we
catch a bit more.
Fishing gear in the longline fishery has also changed over time (Table 2). Instead of tying the hook directly to the fishing lines, a swivel is now placed between the hook and the line, which permits the hook to turn independently from the line to which it is attached. Allan discusses the impact on catch rates:
When we started off, we never even used to put swivels on the lines [. . .]. So the fish never wanted to bite, because it was so close to the line it was visible. So as soon as you put swivels on, the catch rate started going up by, like, 20 per cent, 25 per cent.
Logbook data confirm that while the number of hooks set per year has decreased since 2005, the catch per hook has increased (Fig. 3), suggesting an increase in efficiency. Bob compares the longline gear applied today in Namibia with his experience of fishing in South Africa in 1991:
Ninety-one, but that’s in South Africa. And then, ja, and then what we did there, I mean shhrrr, the way we fished there, we caught so much fish and I don’t even know how it happened that we caught a lot of fish, with no gear. I mean we shoot like up to 20, some boats are shooting up to 27 miles [43 km] of gear here. There we were shooting 1.2 miles [2 km]. The fish was coming, it was laying all over the deck, you know, ja. The fishing was awesome then, look I take this gear that we work with here [. . .] to South Africa, I think it will be like a movie.
Effort in the South African longline fishery has since increased. Nonetheless it remains lower than in the Namibian fishery with approximately 21 km (13 miles) of line and 10,000 hooks in the former (M. Goren, personal communication) as opposed to 20,000 hooks (J. Paterson, personal communication) and up to 43 km (27 miles) of line in Namibia.
Fig. 3. Effort and commercial catch per unit of effort (CPUE) in the Namibian hake longline fishery, 1999 to 2012. Data source: commercial logbook data, Namibia Ministry of Fisheries and Marine Resources.