Engraftment of gene-modified umbilical cord blood cells inneonates wit การแปล - Engraftment of gene-modified umbilical cord blood cells inneonates wit ไทย วิธีการพูด

Engraftment of gene-modified umbili

Engraftment of gene-modified umbilical cord blood cells in
neonates with adenosine deaminase deficiency
Donald B. Kohn1, Kenneth I. Weinberg1, Jan A. Nolta1, Linda N. Heiss1, Carl Lenarsky1,
Gay M. Crooks1, Mary E. Hanley1, Geralyn Annett1, Judith S. Brooks1, Anthony El-
Khoureiy1, Kim Lawrence1, Susie Wells1, Robert C. Moen2, John Bastian3, Debora E.
Williams-Herman4, Melissa Elder4, Diane Wara4, Thomas Bowen5, Michael S. Hershfield6,
Craig A. Mullen7, R. Michael Blaese7, and Robertson Parkman1
1Division of Research Immunology/Bone Marrow Transplantation, Childrens Hospital, Los
Angeles, University of Southern California School of Medicine, 4650 Sunset Boulevard, Los
Angeles, California 90027, USA
2Genetic Therapy, Inc., 938 Clopper Road, Gaithersburg, Maryland 20878, USA
3Children's Hospital and Health Center, San Diego, California 92123, USA
4Department of Pediatrics, University of California at San Francisco, San Francisco, California
94143, USA
51842 Oak Bay, Victoria, BC, Canada, V8R 1C2
6Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA
7National Center for Human Genome Research, National Institutes of Health, Building 49, Room
2A03, 4900 Convent Drive, Bethesda, Maryland 20892-4430, USA
Abstract
Haematopoietic stem cells in umbilical cord blood are an attractive target for gene therapy of
inborn errors of metabolism. Three neonates with severe combined immunodeficiency were
treated by retroviral-mediated transduction of the CD34+ cells from their umbilical cord blood
with a normal human adenosine deaminase complementary DNA followed by autologous
transplantation. The continued presence and expression of the introduced gene in leukocytes from
bone marrow and peripheral blood for 18 months demonstrates that umbilical cord blood cells
may be genetically modified with retroviral vectors and engrafted in neonates for gene therapy.
Inherited deficiency of adenosine deaminase (ADA) is the cause of approximately onequarter
of the cases of severe combined immunodeficiency (SCID)1,2. Based on the
successful treatment of ADA-deficient SCID by allogeneic bone marrow transplantation and
the cloning of the normal human ADA complementary DNA, ADA-deficiency has been a
major target for gene therapy3,4. Theoretically, genetically corrected autologous Tlymphoid
precursors should have a selective survival advantage over non-corrected ADAdeficient
cells. A broad level of expression by an inserted ADA gene (from one-tenth to
above normal) should be beneficial without adverse consequences, although there is no
specific information about consequences of vast overexpression of ADA in cells of all
haematopoietic lineages. Thus, even with the currently modest capabilities to efficiently
© 1995 Nature Publishing Group
Correspondence should be addressed to D.B.K. C.A.M. present address: Department of Experimental Pediatrics, Univeristy of Texas
M.D. Anderson Cancer Center, Box 88, Room AC6.004, 1515 Holcombe Boulevard, Houston, Texas, 77030, USA.
NIH Public Access
Author Manuscript
Nat Med. Author manuscript; available in PMC 2011 January 3.
Published in final edited form as:
Nat Med. 1995 October ; 1(10): 1017–1023.
NIH-PA Author Manuscript NIH-PA Author Manuscript NIH-PA Author Manuscript
transfer genes into primary haematopoietic cells and an inability to control gene expression
in a precise manner, ADA-deficient SCID may respond to gene therapy.
The first clinical trial of gene therapy involved two young girls with ADA deficiency, using
their peripheral blood T lymphocytes as the target for ADA gene transfer5,6. Multiple
courses of leukopheresis, transduction and re-infusion of T lymphocytes led to increased
numbers of T lymphocytes and improved T-Iymphocyte function, with attainment in one of
the two patients of circulating leukocyte ADA levels equivalent to a quarter of those in
normal individuals. Despite these encouraging results with mature T lymphocytes, the
genetic correction of haematopoietic stem cells may create a more long-lasting source of
ADA-expressing T lymphocytes. Information gained from the treatment of ADA deficiency
would be applicable to the use of haematopoietic stem cells for gene therapy for other
aetiologic forms of SCID and to other genetic diseases affecting haematopoietic and
lymphoid cells.
In the spring of 1993, three women who were known to be heterozygous for ADA
deficiency were identified to be carrying ADA-deficient fetuses. After independent genetic
counseling, each family elected to carry its respective pregnancy to term. Because of the
prenatal diagnosis, the unique opportunity was afforded to attempt gene therapy for the
neonates using their umbilical cord blood as a source of haematopoietic stem cells.
Extensive information has been accumulated to indicate that umbilical cord blood contains
haematopoietic stem cells; more than forty patients have had successful haematopoietic
reconstitution by the transplantation of allogeneic cord blood leukocytes following
cytoablative conditioning7,8.
Approval to perform gene transfer into the neonates’ umbilical cord blood followed by the
transplantation of the cells was obtained from the Institutional Review Boards, the
Recombinant DNA Advisory Committee (RAC) of the National Institutes of Health, and the
Food and Drug Administration. The parents of each child gave informed consent for the
collection, transduction and re-infusion of the umbilical cord blood CD34+ cells. After term
delivery of each neonate, umbilical cord blood was collected and processed to isolate the
CD34+ population. The CD34+ cells were transduced with the retroviral vector LASN (ref.
9), which carried a normal human ADA cDNA, and returned to their respective donors by
intravenous infusion on their fourth day of life. Subsequently, we determined the
effectiveness of gene transduction and whether the engraftment of the umbilical cord blood
stem cells had occurred. We report here the results of the first use of umbilical cord blood
cells for clinical gene therapy.
Clinical course
At birth the prenatal diagnosis of ADA-deficiency was confirmed. Fluorescence-activated
cell sorting (FACS) analysis of umbilical cord blood samples demonstrated that the patients
had reduced numbers of T lymphocytes (1.5–2%) compared with those in normal umbilical
cord blood (56.6% ± 12.5). Their levels of serum deoxyadenosine metabolites (dAXP) were
elevated. Following the institution of enzyme replacement therapy with polyethylene glycol
(PEG) combined with ADA on days 1–4 of life (30 U kg-1 twice weekly by intramuscular
injection), there was correction of the metabolic abnormalities, with dAXP levels in
erythrocytes decreasing from 160–302 nmol ml-1 (cord blood red blood cells (RBCs)) to
0/5000
จาก: -
เป็น: -
ผลลัพธ์ (ไทย) 1: [สำเนา]
คัดลอก!
Engraftment of gene-modified umbilical cord blood cells inneonates with adenosine deaminase deficiencyDonald B. Kohn1, Kenneth I. Weinberg1, Jan A. Nolta1, Linda N. Heiss1, Carl Lenarsky1,Gay M. Crooks1, Mary E. Hanley1, Geralyn Annett1, Judith S. Brooks1, Anthony El-Khoureiy1, Kim Lawrence1, Susie Wells1, Robert C. Moen2, John Bastian3, Debora E.Williams-Herman4, Melissa Elder4, Diane Wara4, Thomas Bowen5, Michael S. Hershfield6,Craig A. Mullen7, R. Michael Blaese7, and Robertson Parkman11Division of Research Immunology/Bone Marrow Transplantation, Childrens Hospital, LosAngeles, University of Southern California School of Medicine, 4650 Sunset Boulevard, LosAngeles, California 90027, USA2Genetic Therapy, Inc., 938 Clopper Road, Gaithersburg, Maryland 20878, USA3Children's Hospital and Health Center, San Diego, California 92123, USA4Department of Pediatrics, University of California at San Francisco, San Francisco, California94143, USA51842 Oak Bay, Victoria, BC, Canada, V8R 1C26Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA7National Center for Human Genome Research, National Institutes of Health, Building 49, Room2A03, 4900 Convent Drive, Bethesda, Maryland 20892-4430, USAAbstractHaematopoietic stem cells in umbilical cord blood are an attractive target for gene therapy ofinborn errors of metabolism. Three neonates with severe combined immunodeficiency wereรับการรักษา โดย retroviral mediated transduction CD34 + เซลล์จากเลือดสายสะดือมีอะดีมนุษย์ปกติ deaminase เสริมดีเอ็นเอตาม ด้วย autologousปลูก แสดงตนอย่างต่อเนื่องและค่าของยีนนำใน leukocytes จากไขกระดูกและเลือดต่อพ่วงสำหรับ 18 เดือนแสดงให้เห็นว่าสายสะดือเม็ดเลือดอาจจะแปลงพันธุกรรมแก้ไข ด้วยเวกเตอร์ retroviral และ engrafted ใน neonates สำหรับการบำบัดยีนได้ขาดการสืบทอดของอะดี deaminase (ADA) เป็นสาเหตุของ onequarter ประมาณกรณีรุนแรง combined เอชไอวี (วทคร) 1, 2 ตามวทคร ADA ไม่โดยการปลูกถ่ายไขกระดูก allogeneic บำบัดประสบความสำเร็จ และการโคลนปกติมนุษย์ ADA เสริมเอ็น ADA ขาดได้รับการเป้าหมายหลักสำหรับยีน therapy3, 4 ตามหลักวิชา แปลงพันธุกรรมแก้ไข autologous Tlymphoidprecursors ควรได้ประโยชน์เลือกอยู่รอดผ่าน ADAdeficient ไม่ได้แก้ไขเซลล์ ระดับกว้างของนิพจน์โดยมียีน ADA แทรก (จากหนึ่งส่วนสิบไปสูงกว่าปกติ) ควรจะเป็นประโยชน์ โดยไม่มีผลร้าย แม้จะมีไม่ข้อมูลเฉพาะเกี่ยวกับผลกระทบของ overexpression ของ ADA ในเซลล์ทั้งหมดมากมายเชื้อชาติ haematopoietic ดังนั้น แม้ ด้วยความเจียมเนื้อเจียมตัวในปัจจุบันให้มีประสิทธิภาพ© 1995 ธรรมชาติประกาศ กลุ่มควรส่งจดหมายถึง D.B.K. C.A.M. ที่อยู่ปัจจุบัน: แผนกกุมารเวชกรรมทดลอง Univeristy เท็กซัสศูนย์โรคมะเร็งนพ.แอนเดอร์สัน กล่อง 88 ห้อง AC6.004, 1515 Holcombe บูเลอวาร์ด ฮุสตัน เท็กซัส 77030 สหรัฐอเมริกาNIH เข้าไปถึงผู้เขียนฉบับผู้เขียนประ Nat ฉบับ มีในเอ็ม 2011 3 มกราคมเผยแพร่ในขั้นสุดท้ายแบบฟอร์มแก้ไขเป็น:Nat ประเดือน 1995 ตุลาคม 1(10): 1017-ทีNIH PA ผู้เขียนฉบับ NIH PA ผู้เขียนฉบับ NIH PA ผู้เขียนฉบับการถ่ายโอนยีนในเซลล์ haematopoietic หลักและไม่สามารถควบคุมการแสดงออกของยีนอย่างแม่นยำ วทคร ADA ไม่อาจตอบสนองต่อการรักษาด้วยยีนทดลองทางคลินิกครั้งแรกของการรักษาด้วยยีนเกี่ยวข้องกับสองสาวกับ ADA ขาด ใช้ของเลือดต่อพ่วง T lymphocytes เป็นเป้าหมายสำหรับ ADA ยีน transfer5, 6 หลายหลักสูตร leukopheresis, transduction และคอนกรีตใหม่ของ T lymphocytes นำไปสู่การเพิ่มขึ้นจำนวน T lymphocytes และฟังก์ชัน T Iymphocyte ปรับปรุง มีโดยในหนึ่งผู้ป่วยสองของหมุนเวียนเท่ากับไตรมาสในระดับ leukocyte ADAคนปกติ แม้ มีผลกับผู้ใหญ่ T lymphocytes ส่งเสริมเหล่านี้การแก้ไขทางพันธุกรรมของเซลล์ต้นกำเนิด haematopoietic อาจสร้างเป็นแหล่งขึ้นยาวนานแสดง ADA lymphocytes T ข้อมูลที่ได้รับจากการรักษาของ ADA ขาดจะใช้กับการใช้เซลล์ต้นกำเนิดของ haematopoietic สำหรับการบำบัดยีนสำหรับอื่น ๆแบบฟอร์ม aetiologic ภายใต้ และโรคพันธุกรรมอื่น ๆ ที่ส่งผลกระทบต่อ haematopoietic และเซลล์ lymphoidในฤดูใบไม้ผลิ 1993 ผู้หญิงสามถูกเรียกเป็น heterozygous สำหรับ ADAขาดได้ระบุให้สามารถแบก fetuses ADA ไม่ หลังอิสระทางพันธุกรรมให้คำปรึกษา ครอบครัวละเลือกเพื่อดำเนินการตั้งครรภ์ตามลำดับในระยะ เนื่องจากการวินิจฉัยก่อนคลอด สไตล์ที่นี่พยายามใช้ยีนบำบัดในการneonates โดยใช้เลือดสายสะดือเป็นแหล่งของเซลล์ต้นกำเนิด haematopoieticมีการสะสมข้อมูลมากมายเพื่อบ่งชี้ว่า ประกอบด้วยเลือดสายสะดือเซลล์ต้นกำเนิด haematopoietic ผู้ป่วยมากกว่าสี่สิบมี haematopoietic ประสบความสำเร็จreconstitution โดยปลูกของ leukocytes เลือด allogeneic สายดังต่อไปนี้cytoablative conditioning7, 8อนุมัติให้ดำเนินการถ่ายโอนยีนเข้าไปในเลือดสายสะดือของ neonates ตามการปลูกถ่ายเซลล์ได้รับจากคณะกรรมการตรวจสอบสถาบัน การวททชดีเอ็นเอที่ปรึกษา (RAC) ของสถาบันแห่งชาติสุขภาพ และอาหารและยา พ่อแม่ของเด็กแต่ละคนให้แจ้งความยินยอมในการคอลเลกชัน transduction และคอนกรีตใหม่ของเซลล์เลือด CD34 + สะดือ หลังจากระยะจัดส่งของแต่ละ neonate เลือดสายสะดือถูกรวบรวม และประมวลผลการแยกCD34 + ประชากร เซลล์ CD34 + ถูก transduced กับเวกเตอร์ retroviral LASN (อ้างอิง9), ซึ่งดำเนิน cDNA ADA มนุษย์ปกติ และส่งกลับไปยังผู้บริจาคของพวกเขาเกี่ยวข้องด้วยคอนกรีตฉีดในวันที่สี่ของชีวิต ในเวลาต่อมา เรากำหนดประสิทธิภาพของยีน transduction และ engraftment เลือดสายสะดือเซลล์ต้นกำเนิดได้เกิดขึ้น ที่นี่เรารายงานผลครั้งแรกที่ใช้เลือดสายสะดือเซลล์สำหรับการบำบัดยีนทางคลินิกหลักสูตรคลินิกที่เกิด มียืนยันการวินิจฉัยก่อนคลอดของ ADA-ขาด เรียกใช้ fluorescenceแสดงเซลล์ที่เรียงลำดับ (FACS) วิเคราะห์ตัวอย่างเลือดสายสะดือที่ผู้ป่วยได้ลดจำนวน lymphocytes T (1.5 – 2%) เทียบกับใน umbilical ปกติสายโลหิต (56.6% ± 12.5) มีการระดับของ metabolites deoxyadenosine เซรั่ม (dAXP)ยกระดับการ ต่อสถาบันบำบัดทดแทนเอนไซม์กับ polyethylene glycol(PEG) รวมกับ ADA ในวันที่ 1 – 4 ของชีวิต (30 U กก.-1 สองสัปดาห์ โดยบาดทะยักจากฉีด), มีการแก้ไขการเผาผลาญผิดปกติ ระดับ dAXP ในerythrocytes ลดลงจาก 160 – 302 nmol ml-1 (สายเม็ดเลือดแดงเซลล์เม็ดเลือด (RBCs)) กับ < 10nmol ml-1 ภายใน 7 – 10 สัปดาห์ ผู้ป่วยทั้งหมดที่สามยังคงมีสุขภาพดีในขณะที่รับ PEG-ADA การเจริญเติบโตได้ปกติด้วยไม่ติดเชื้อภาวะแทรกซ้อนยกเว้นติดเชื้อทางเดินหายใจด้านบนตามปกติ Prophylaxis ด้วยปากให้ทางหลอดเลือดดำแกมมากลอบูลินและไตรเมโท พริม/sulphamethoxazole (SMX tmp ถ้า)Kohn et al. หน้า 2ผู้เขียนประ Nat ฉบับ มีในเอ็ม 2011 3 มกราคมNIH PA ผู้เขียนฉบับ NIH PA ผู้เขียนฉบับ NIH PA ผู้เขียนฉบับfor the first six months to patient 1, patient 2 remains on TMP/SMX, and patient 3 continuesto receive both intravenous gamma globulin and TMP/SMX.Gene transduction of umbilical cord blood CD34+ cellsBetween 60 and 200 ml of umbilical cord blood was obtained from the three infants. FACSanalysis of the umbilical cord leukocytes demonstrated that between 0.7% and 0.9% of thecells were positive for the stem cell/progenitor antigen, CD34. The cord blood samples weremixed with biotinylated monoclonal antibody to CD34 and processed through an avidinimmunoaffinlty column. The resulting cell populations were between 32% and 62% CD34positive, with yields between 24% and 89%.The enriched CD34+ cells were transduced with three rounds of LASN retroviral vectorcontainingsupernatant in the presence of recombinant haematopoietic growth factors(interleukin-3 (IL-3), IL-6 and stem cell factor) to enhance gene transfer. After three days ofculture, the total numbers of leukocytes increased by 1.3- to 2.4-fold. The LASN-transducedumbilical cord blood cells were then infused intravenously into each patient on his fourthday of life. No toxicities were noted during or after the infusions.To assess the efficiency of retroviral-mediated transduction of clonogenic myeloidprogenitors contained within the cord blood cells before transplantation, samples wereplated in a colony-forming unit granulocyte-macrophage (CFU-GM) assay, with and withoutthe selective neomycin analogue, G418. The expression of the neo gene contained in theLASN vector permits colonies derived from transduced progenitors to survive in G418.From the three patients, 21.5%, 12.5% and 19.4% of the clonogenic progenitors were G418-resistant.Peripheral blood leukocytesTo determine whether the transduced CD34+ cells had engrafted and whether theycontributed to circulating leukocyte populations, we obtained serial peripheral bloodsamples at monthly intervals after transplantation. The frequency of peripheral bloodmononuclear cells and granulocytes that contained vector DNA sequences was determinedby semiquantitative polymerase chain reaction (PCR) analysis. PCR primers were designedto specifically amplify only vector-derived sequences; one primer was complementary tosequences of the Moloney murine leukaemia virus backbone of the vector and one wascomplementary to the human ADA cDNA (Fig. 1a). The intensities of the signals fromleukocyte samples were compared with those of a standard curve to allow an estimation ofthe frequency of circulating leukocytes containing the integrated LASN provirus sequ
การแปล กรุณารอสักครู่..
ผลลัพธ์ (ไทย) 2:[สำเนา]
คัดลอก!
Engraftment of gene-modified umbilical cord blood cells in
neonates with adenosine deaminase deficiency
Donald B. Kohn1, Kenneth I. Weinberg1, Jan A. Nolta1, Linda N. Heiss1, Carl Lenarsky1,
Gay M. Crooks1, Mary E. Hanley1, Geralyn Annett1, Judith S. Brooks1, Anthony El-
Khoureiy1, Kim Lawrence1, Susie Wells1, Robert C. Moen2, John Bastian3, Debora E.
Williams-Herman4, Melissa Elder4, Diane Wara4, Thomas Bowen5, Michael S. Hershfield6,
Craig A. Mullen7, R. Michael Blaese7, and Robertson Parkman1
1Division of Research Immunology/Bone Marrow Transplantation, Childrens Hospital, Los
Angeles, University of Southern California School of Medicine, 4650 Sunset Boulevard, Los
Angeles, California 90027, USA
2Genetic Therapy, Inc., 938 Clopper Road, Gaithersburg, Maryland 20878, USA
3Children's Hospital and Health Center, San Diego, California 92123, USA
4Department of Pediatrics, University of California at San Francisco, San Francisco, California
94143, USA
51842 Oak Bay, Victoria, BC, Canada, V8R 1C2
6Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA
7National Center for Human Genome Research, National Institutes of Health, Building 49, Room
2A03, 4900 Convent Drive, Bethesda, Maryland 20892-4430, USA
Abstract
Haematopoietic stem cells in umbilical cord blood are an attractive target for gene therapy of
inborn errors of metabolism. Three neonates with severe combined immunodeficiency were
treated by retroviral-mediated transduction of the CD34+ cells from their umbilical cord blood
with a normal human adenosine deaminase complementary DNA followed by autologous
transplantation. The continued presence and expression of the introduced gene in leukocytes from
bone marrow and peripheral blood for 18 months demonstrates that umbilical cord blood cells
may be genetically modified with retroviral vectors and engrafted in neonates for gene therapy.
Inherited deficiency of adenosine deaminase (ADA) is the cause of approximately onequarter
of the cases of severe combined immunodeficiency (SCID)1,2. Based on the
successful treatment of ADA-deficient SCID by allogeneic bone marrow transplantation and
the cloning of the normal human ADA complementary DNA, ADA-deficiency has been a
major target for gene therapy3,4. Theoretically, genetically corrected autologous Tlymphoid
precursors should have a selective survival advantage over non-corrected ADAdeficient
cells. A broad level of expression by an inserted ADA gene (from one-tenth to
above normal) should be beneficial without adverse consequences, although there is no
specific information about consequences of vast overexpression of ADA in cells of all
haematopoietic lineages. Thus, even with the currently modest capabilities to efficiently
© 1995 Nature Publishing Group
Correspondence should be addressed to D.B.K. C.A.M. present address: Department of Experimental Pediatrics, Univeristy of Texas
M.D. Anderson Cancer Center, Box 88, Room AC6.004, 1515 Holcombe Boulevard, Houston, Texas, 77030, USA.
NIH Public Access
Author Manuscript
Nat Med. Author manuscript; available in PMC 2011 January 3.
Published in final edited form as:
Nat Med. 1995 October ; 1(10): 1017–1023.
NIH-PA Author Manuscript NIH-PA Author Manuscript NIH-PA Author Manuscript
transfer genes into primary haematopoietic cells and an inability to control gene expression
in a precise manner, ADA-deficient SCID may respond to gene therapy.
The first clinical trial of gene therapy involved two young girls with ADA deficiency, using
their peripheral blood T lymphocytes as the target for ADA gene transfer5,6. Multiple
courses of leukopheresis, transduction and re-infusion of T lymphocytes led to increased
numbers of T lymphocytes and improved T-Iymphocyte function, with attainment in one of
the two patients of circulating leukocyte ADA levels equivalent to a quarter of those in
normal individuals. Despite these encouraging results with mature T lymphocytes, the
genetic correction of haematopoietic stem cells may create a more long-lasting source of
ADA-expressing T lymphocytes. Information gained from the treatment of ADA deficiency
would be applicable to the use of haematopoietic stem cells for gene therapy for other
aetiologic forms of SCID and to other genetic diseases affecting haematopoietic and
lymphoid cells.
In the spring of 1993, three women who were known to be heterozygous for ADA
deficiency were identified to be carrying ADA-deficient fetuses. After independent genetic
counseling, each family elected to carry its respective pregnancy to term. Because of the
prenatal diagnosis, the unique opportunity was afforded to attempt gene therapy for the
neonates using their umbilical cord blood as a source of haematopoietic stem cells.
Extensive information has been accumulated to indicate that umbilical cord blood contains
haematopoietic stem cells; more than forty patients have had successful haematopoietic
reconstitution by the transplantation of allogeneic cord blood leukocytes following
cytoablative conditioning7,8.
Approval to perform gene transfer into the neonates’ umbilical cord blood followed by the
transplantation of the cells was obtained from the Institutional Review Boards, the
Recombinant DNA Advisory Committee (RAC) of the National Institutes of Health, and the
Food and Drug Administration. The parents of each child gave informed consent for the
collection, transduction and re-infusion of the umbilical cord blood CD34+ cells. After term
delivery of each neonate, umbilical cord blood was collected and processed to isolate the
CD34+ population. The CD34+ cells were transduced with the retroviral vector LASN (ref.
9), which carried a normal human ADA cDNA, and returned to their respective donors by
intravenous infusion on their fourth day of life. Subsequently, we determined the
effectiveness of gene transduction and whether the engraftment of the umbilical cord blood
stem cells had occurred. We report here the results of the first use of umbilical cord blood
cells for clinical gene therapy.
Clinical course
At birth the prenatal diagnosis of ADA-deficiency was confirmed. Fluorescence-activated
cell sorting (FACS) analysis of umbilical cord blood samples demonstrated that the patients
had reduced numbers of T lymphocytes (1.5–2%) compared with those in normal umbilical
cord blood (56.6% ± 12.5). Their levels of serum deoxyadenosine metabolites (dAXP) were
elevated. Following the institution of enzyme replacement therapy with polyethylene glycol
(PEG) combined with ADA on days 1–4 of life (30 U kg-1 twice weekly by intramuscular
injection), there was correction of the metabolic abnormalities, with dAXP levels in
erythrocytes decreasing from 160–302 nmol ml-1 (cord blood red blood cells (RBCs)) to <10
nmol ml-1 within 7–10 weeks. All three patients have remained in good health while
receiving PEG–ADA. Growth and development have been normal with no infectious
complications except for routine upper respiratory tract infections. Prophylaxis with oral
trimethoprim/sulphamethoxazole (TMP/SMX) and intravenous gamma globulin was given
Kohn et al. Page 2
Nat Med. Author manuscript; available in PMC 2011 January 3.
NIH-PA Author Manuscript NIH-PA Author Manuscript NIH-PA Author Manuscript
for the first six months to patient 1, patient 2 remains on TMP/SMX, and patient 3 continues
to receive both intravenous gamma globulin and TMP/SMX.
Gene transduction of umbilical cord blood CD34+ cells
Between 60 and 200 ml of umbilical cord blood was obtained from the three infants. FACS
analysis of the umbilical cord leukocytes demonstrated that between 0.7% and 0.9% of the
cells were positive for the stem cell/progenitor antigen, CD34. The cord blood samples were
mixed with biotinylated monoclonal antibody to CD34 and processed through an avidin
immunoaffinlty column. The resulting cell populations were between 32% and 62% CD34
positive, with yields between 24% and 89%.
The enriched CD34+ cells were transduced with three rounds of LASN retroviral vectorcontaining
supernatant in the presence of recombinant haematopoietic growth factors
(interleukin-3 (IL-3), IL-6 and stem cell factor) to enhance gene transfer. After three days of
culture, the total numbers of leukocytes increased by 1.3- to 2.4-fold. The LASN-transduced
umbilical cord blood cells were then infused intravenously into each patient on his fourth
day of life. No toxicities were noted during or after the infusions.
To assess the efficiency of retroviral-mediated transduction of clonogenic myeloid
progenitors contained within the cord blood cells before transplantation, samples were
plated in a colony-forming unit granulocyte-macrophage (CFU-GM) assay, with and without
the selective neomycin analogue, G418. The expression of the neo gene contained in the
LASN vector permits colonies derived from transduced progenitors to survive in G418.
From the three patients, 21.5%, 12.5% and 19.4% of the clonogenic progenitors were G418-
resistant.
Peripheral blood leukocytes
To determine whether the transduced CD34+ cells had engrafted and whether they
contributed to circulating leukocyte populations, we obtained serial peripheral blood
samples at monthly intervals after transplantation. The frequency of peripheral blood
mononuclear cells and granulocytes that contained vector DNA sequences was determined
by semiquantitative polymerase chain reaction (PCR) analysis. PCR primers were designed
to specifically amplify only vector-derived sequences; one primer was complementary to
sequences of the Moloney murine leukaemia virus backbone of the vector and one was
complementary to the human ADA cDNA (Fig. 1a). The intensities of the signals from
leukocyte samples were compared with those of a standard curve to allow an estimation of
the frequency of circulating leukocytes containing the integrated LASN provirus sequ
การแปล กรุณารอสักครู่..
ผลลัพธ์ (ไทย) 3:[สำเนา]
คัดลอก!
การปลูกถ่ายยีนเลือดสายสะดือในทารกแรกเกิดกับเซลล์ขาด

ดีอะมิเนส โดนัลด์ พ. kohn1 , เคนเนทผม weinberg1 Jan . nolta1 ลินดา ที่ heiss1 คาร์ล lenarsky1
เกย์ , ม. crooks1 Mary E . hanley1 geralyn annett1 จูดิธ , , S . brooks1 แอนโทนี่ เอล -
khoureiy1 คิม lawrence1 ซูซี่ wells1 , โรเบิร์ต C . moen2 จอห์น bastian3 เดบ ่า , E .
williams-herman4 elder4 , เมลิซ่า ,ไดแอน wara4 โทมัส bowen5 ไมเคิล เอส hershfield6
. mullen7 , เครก , ไมเคิล blaese7 อาร์ และ โรเบิร์ตสัน parkman1
1division วิจัยภูมิคุ้มกันวิทยา / การปลูกถ่ายไขกระดูก โรงพยาบาลเด็ก , Los
Angeles , มหาวิทยาลัยแห่งแคลิฟอร์เนียภาคใต้โรงเรียนแพทยศาสตร์ 4650 Sunset Boulevard ลอสแองเจลิส รัฐแคลิฟอร์เนีย สหรัฐอเมริกา 90027
, ,
2genetic บำบัด , Inc ผม clopper , ถนน , Gaithersburg , แมรี่แลนด์ 20878 USA
ศูนย์สุขภาพและโรงพยาบาล 3children คือ ซานดิเอโก , แคลิฟอร์เนีย 92123 USA
4department กุมารเวชศาสตร์ จากมหาวิทยาลัยแคลิฟอร์เนียในซานฟรานซิสโก ซานฟรานซิสโก แคลิฟอร์เนีย สหรัฐอเมริกา 94143
,
51842 Oak Bay , Victoria , BC , แคนาดา , v8r 1c2
6department แพทยศาสตร์ มหาวิทยาลัย Duke ศูนย์การแพทย์ Durham , North Carolina 27710 , สหรัฐอเมริกา
ศูนย์ 7national สำหรับการวิจัยจีโนมมนุษย์ สถาบันสุขภาพแห่งชาติอาคาร 49 ห้อง
2a03 , คอนแวนต์ , ไดรฟ์ , Bethesda , Maryland 20892-4430 USA

ที่แท้จริงเป็นสเต็มเซลล์ในสายสะดือเป็นเป้าหมายที่น่าสนใจสำหรับยีนบำบัดของ
สายอักขระว่าง . สามทารกแรกเกิดที่มีภูมิคุ้มกันบกพร่องรุนแรงรวมเป็น
ถือว่า retroviral โดยการแปรของ cd34 เซลล์จากเลือดสายสะดือ
กับคนปกติดีอะมิเนสจากดีเอ็นเอของ
ตามด้วยการปลูก ยังคงสถานะและการแสดงออกของยีนชนิดที่แนะนำในไขกระดูกและเลือดจาก
ต่อเป็นเวลา 18 เดือน สะท้อนให้เห็นว่า เลือดจากสายสะดือเซลล์
อาจจะดัดแปลงพันธุกรรมที่มีเวกเตอร์และ retroviral engrafted ในทารกแรกเกิดสำหรับยีนบำบัด .
กระเหม่นของดีอะมิเนส ( ADA ) เป็นสาเหตุประมาณ onequarter
กรณีรุนแรง รวมภูมิคุ้มกันบกพร่อง ( สคิด ) 1 , 2 ขึ้นอยู่กับการรักษาที่ประสบความสําเร็จของ ADA ขาด
allogeneic สคิด โดยการปลูกถ่ายไขกระดูกและ
โคลนนิ่งของมนุษย์ปกติเอประกอบดีเอ็นเอ , ADA ขาดได้รับยีนเป้าหมายหลัก
therapy3,4 . ในทางทฤษฎีแก้ไขพันธุกรรมของ tlymphoid
ตั้งต้นควรเลือกที่ไม่รอดจากการแก้ไข adadeficient
เซลล์ กว้างระดับการแสดงออกของยีนโดยแทรก ADA ( จากหนึ่งในสิบ

สูงกว่าปกติ ) ควรเป็นประโยชน์ โดยไม่มีผลกระทบที่ไม่พึงประสงค์ แม้ว่าไม่มี
ข้อมูลเฉพาะเกี่ยวกับผลของ overexpression กว้างใหญ่ของเอในเซลล์ทั้งหมด
เผ่าพันธุ์ที่แท้จริง . ฉะนั้น แม้ในขณะนี้ได้อย่างมีประสิทธิภาพด้วยเจียมเนื้อเจียมตัวสงวนลิขสิทธิ์ 2538 กลุ่มสำนักพิมพ์ธรรมชาติ

จดหมายควรให้ความสนใจที่จะ d.b.k. c.a.m. ปัจจุบันภาควิชากุมารเวชศาสตร์ มหาวิทยาลัยเท็กซัสทดลอง , M.D . Anderson
ศูนย์มะเร็ง กล่อง ac6.004 1304 88 , ห้อง , โฮลเคิ่มบ์ Boulevard , ฮูสตัน , เท็กซัส , 77030 , USA

NIH เข้าถึงสาธารณะผู้เขียน ต้นฉบับ
แนทด้วย .
การแปล กรุณารอสักครู่..
 
ภาษาอื่น ๆ
การสนับสนุนเครื่องมือแปลภาษา: กรีก, กันนาดา, กาลิเชียน, คลิงออน, คอร์สิกา, คาซัค, คาตาลัน, คินยารวันดา, คีร์กิซ, คุชราต, จอร์เจีย, จีน, จีนดั้งเดิม, ชวา, ชิเชวา, ซามัว, ซีบัวโน, ซุนดา, ซูลู, ญี่ปุ่น, ดัตช์, ตรวจหาภาษา, ตุรกี, ทมิฬ, ทาจิก, ทาทาร์, นอร์เวย์, บอสเนีย, บัลแกเรีย, บาสก์, ปัญจาป, ฝรั่งเศส, พาชตู, ฟริเชียน, ฟินแลนด์, ฟิลิปปินส์, ภาษาอินโดนีเซี, มองโกเลีย, มัลทีส, มาซีโดเนีย, มาราฐี, มาลากาซี, มาลายาลัม, มาเลย์, ม้ง, ยิดดิช, ยูเครน, รัสเซีย, ละติน, ลักเซมเบิร์ก, ลัตเวีย, ลาว, ลิทัวเนีย, สวาฮิลี, สวีเดน, สิงหล, สินธี, สเปน, สโลวัก, สโลวีเนีย, อังกฤษ, อัมฮาริก, อาร์เซอร์ไบจัน, อาร์เมเนีย, อาหรับ, อิกโบ, อิตาลี, อุยกูร์, อุสเบกิสถาน, อูรดู, ฮังการี, ฮัวซา, ฮาวาย, ฮินดี, ฮีบรู, เกลิกสกอต, เกาหลี, เขมร, เคิร์ด, เช็ก, เซอร์เบียน, เซโซโท, เดนมาร์ก, เตลูกู, เติร์กเมน, เนปาล, เบงกอล, เบลารุส, เปอร์เซีย, เมารี, เมียนมา (พม่า), เยอรมัน, เวลส์, เวียดนาม, เอสเปอแรนโต, เอสโทเนีย, เฮติครีโอล, แอฟริกา, แอลเบเนีย, โคซา, โครเอเชีย, โชนา, โซมาลี, โปรตุเกส, โปแลนด์, โยรูบา, โรมาเนีย, โอเดีย (โอริยา), ไทย, ไอซ์แลนด์, ไอร์แลนด์, การแปลภาษา.

Copyright ©2024 I Love Translation. All reserved.

E-mail: