Table 1
Characteristics of the study population
Table 2 shows the number of infants meeting the criteria for CPAP, oxygen or early CPAP using the TRY CPAP algorithm based on the separate assessments of a nurse and a doctor on call compared with the neonatologist's assessment. The neonatologist assessed that 20 neonates (6.2%) needed early CPAP, 21 (6.5%) needed CPAP, 87 (26.7%) qualified for oxygen therapy and 197 (60.6%) neonates did not require any respiratory support. In comparison, the nurses assessed that 16 (5%) neonates qualified for early CPAP, 18 (5.5%) required CPAP, 105 (32.3%) required oxygen therapy and 186 (57.2%) did not need any respiratory support. The registrars on call assessed that 15 neonates (4.6%) qualified for early CPAP, 22 neonates (6.8%) qualified for CPAP, 91 neonates (28%) needed oxygen therapy and 197 (60.6%) neonates needed no respiratory support. The extra patient put on CPAP by the registrars on call when compared with the neonatologist's assessment was a hypotonic infant with severe HIE that the TRY CPAP algorithm excludes. The differences in assessment of three infants that the nurses determined did not need CPAP when compared with the neonatologist was for one infant with severe sepsis, another with meconium aspiration syndrome (MAS) and a third infant with RDS. For the patient with MAS, the infant's oxygen saturations varied between 88% and 91%. For the patient with sepsis and RDS, the patient was considered to have depressed tone, and was therefore excluded by the nurses. Taking the neonatologist's assessment as the reference standard, the sensitivity of the algorithm in appropriately deciding the need for CPAP as done by the nurses was 82.9% (95% CI 67.9% to 92.8%) and the specificity was 100% (95% CI 98.7% to 100%). Similarly, for the registrars on call, the sensitivity and specificity were 87.8% (95% CI 73.8% to 95.9%) and 99.6% (95% CI 98.0% to 99.9%), respectively.
Table 2
Comparison of nurse assessment and registrar on call assessment with neonatologist reference assessment using the TRY CPAP algorithm
Since the introduction of early postdelivery stabilisation on CPAP of neonates born at ≤30 weeks GA with good respiratory effort at birth was a new concept for the nurses and registrars on call in the neonatal ward, differences in assessments for infants getting early CPAP were expected as part of the learning curve. Thus, two of the four infants whom the nurses assessed as not qualifying for early CPAP and five patients whom the registrars on call did not put on early CPAP were due to failure in recollection of the early CPAP branch of the algorithm. Further, the remaining two of the four infants were excluded by the nurses as they were assessed to be hypotonic.
Table 1Characteristics of the study populationTable 2 shows the number of infants meeting the criteria for CPAP, oxygen or early CPAP using the TRY CPAP algorithm based on the separate assessments of a nurse and a doctor on call compared with the neonatologist's assessment. The neonatologist assessed that 20 neonates (6.2%) needed early CPAP, 21 (6.5%) needed CPAP, 87 (26.7%) qualified for oxygen therapy and 197 (60.6%) neonates did not require any respiratory support. In comparison, the nurses assessed that 16 (5%) neonates qualified for early CPAP, 18 (5.5%) required CPAP, 105 (32.3%) required oxygen therapy and 186 (57.2%) did not need any respiratory support. The registrars on call assessed that 15 neonates (4.6%) qualified for early CPAP, 22 neonates (6.8%) qualified for CPAP, 91 neonates (28%) needed oxygen therapy and 197 (60.6%) neonates needed no respiratory support. The extra patient put on CPAP by the registrars on call when compared with the neonatologist's assessment was a hypotonic infant with severe HIE that the TRY CPAP algorithm excludes. The differences in assessment of three infants that the nurses determined did not need CPAP when compared with the neonatologist was for one infant with severe sepsis, another with meconium aspiration syndrome (MAS) and a third infant with RDS. For the patient with MAS, the infant's oxygen saturations varied between 88% and 91%. For the patient with sepsis and RDS, the patient was considered to have depressed tone, and was therefore excluded by the nurses. Taking the neonatologist's assessment as the reference standard, the sensitivity of the algorithm in appropriately deciding the need for CPAP as done by the nurses was 82.9% (95% CI 67.9% to 92.8%) and the specificity was 100% (95% CI 98.7% to 100%). Similarly, for the registrars on call, the sensitivity and specificity were 87.8% (95% CI 73.8% to 95.9%) and 99.6% (95% CI 98.0% to 99.9%), respectively.Table 2Comparison of nurse assessment and registrar on call assessment with neonatologist reference assessment using the TRY CPAP algorithmSince the introduction of early postdelivery stabilisation on CPAP of neonates born at ≤30 weeks GA with good respiratory effort at birth was a new concept for the nurses and registrars on call in the neonatal ward, differences in assessments for infants getting early CPAP were expected as part of the learning curve. Thus, two of the four infants whom the nurses assessed as not qualifying for early CPAP and five patients whom the registrars on call did not put on early CPAP were due to failure in recollection of the early CPAP branch of the algorithm. Further, the remaining two of the four infants were excluded by the nurses as they were assessed to be hypotonic.
การแปล กรุณารอสักครู่..