LINEAR ALGEBRA OF PASCAL MATRICESLINDSAY YATESAbstract. The famous Pas การแปล - LINEAR ALGEBRA OF PASCAL MATRICESLINDSAY YATESAbstract. The famous Pas ไทย วิธีการพูด

LINEAR ALGEBRA OF PASCAL MATRICESLI

LINEAR ALGEBRA OF PASCAL MATRICES
LINDSAY YATES
Abstract. The famous Pascal’s triangle appears in many areas of
mathematics, such as number theory, combinatorics and algebra.
Pascal matrices are derived from this triangle of binomial coeffi-
cients, which create simplistic matrices with interesting properties.
We explore properties of these matrices and the inverse of the Pascal
matrix plus the identity matrix times any positive integer. We
further consider a unique matrix called the Stirling matrix, which
can be factorized in terms of the Pascal matrix.
1. Introduction
The ancient arithmetic triangle, today known as Pascal’s triangle, is
an infinite numerical table represented in triangular form. The numbers
displayed in the triangle are called binomial coefficients,
n
k

, which
represent the number of ways of picking k unordered outcomes from n
possibilities. Each entry in the triangle is obtained by adding together
two entries from the row above: the one directly to the left and the
one directly to the right; this pattern can be seen in the image below.
The Pascal’s triangle has been known for over ten centuries. The set
of numbers that form the Pascal’s triangle were known before Blaise
Date: December 5, 2014.
1
LINEAR ALGEBRA OF PASCAL MATRICES 2
Pascal, although he is attributed with being the first one to publish
the information known about the triangle in his treatise, Trait´e du triangle
arithm´etique. The numbers originally arose from Indian studies
of combinatorics and the Greeks interest in figurate numbers. These
numbers were continually discussed by Islamic mathematicians during
the 10th century and in the 11th century by a Persian poet named
Omar Khayyam. They were also seen in China during the 13th century.
The Pascal’s triangle was officially published in Pascal’s treatise
soon after his death in 1665.
This triangle arises in many areas of mathematics such as algebra,
probability, and combinatorics. We were motivated by the Pascal’s
triangle prominence in the field of mathematics and its many applications,
in particular Pascal matrices. We wanted to further our studies
to consider the various properties and unique connections that Pascal
matrices has to other functions and number sequences.
2. Pascal Matrices
The Pascal’s triangle can be transcribed into a matrix containing
the binomial coefficients as its elements. We can form three types of
matrices: symmetric, lower triangular, and upper triangular, for any
integer n > 0.
The symmetric Pascal matrix of order n is defined by Sn = (sij ), where
sij =

i + j − 2
j − 1

for i, j = 1, 2, ...., n (1)
We can define the lower triangular Pascal matrix of order n by Ln =
(lij ), where
lij =
(
i−1
j−1

if i ≥ j
0 otherwise
(2)
The upper triangular Pascal matrix of order n is defined by Un = (uij ),
where
uij =
(
j−1
i−1

if j ≥ i
0 otherwise
(3)
LINEAR ALGEBRA OF PASCAL MATRICES 3
We notice that Un = (Ln)
T
, for any positive integer n.
For example, for n = 5 we have:
S5 =


1 1 1 1 1
1 2 3 4 5
1 3 6 10 15
1 4 10 20 35
1 5 15 35 70


L5 =


1 0 0 0 0
1 1 0 0 0
1 2 1 0 0
1 3 3 1 0
1 4 6 4 1


U5 =


1 1 1 1 1
0 1 2 3 4
0 0 1 3 6
0 0 0 1 4
0 0 0 0 1


These Pascal matrices have some interesting properties, which we present
next.
Theorem 2.1. [1] Let Sn be the symmetric Pascal matrix of order n
defined by (1), Ln be the lower triangular Pascal matrix of order n de-
fined by (2), and Un be the upper triangular Pascal matrix of order n
defined by (3), then Sn = LnUn.
Proof. Let Ln be the lower triangular Pascal matrix of order n defined
by (2) and Un be the upper triangular Pascal matrix of order n defined
by (3). By direct multiplication of matrices Ln and Un we obtain the
ij-th element of the product LnUn:
Xn
k=1
likukj =
Xn
k=1
liklkj , since Un = (Ln)
T
.
Then, Xn
k=1
likljk =
Xn
k=1

i − 1
k − 1
j − 1
k − 1

=
X
j
k=1

i − 1
k − 1
j − 1
k − 1

=
=
X
j
k=1

i − 1
k − 1
j − 1
j − k

, since lik = 0 for k>j.
The Vandermonde identity says that:
Xn
t=0

m
t
 n
n − t

=

m + n
n

, for any m,n,t ∈ N (4)
Let m = i − 1, n = j − 1, and t = k − 1 in (4).
Then, X
j
k=1

i − 1
k − 1
j − 1
j − k

=

i + j − 2
j − 1

= sij , the entries of the symmetric
Pascal matrix Sn. Hence, Sn = LnUn.
LINEAR ALGEBRA OF PASCAL MATRICES 4
This result can be used to determine the determinant of the symmetric
Pascal matrix, Sn.
Corollary 2.2. If Sn is the symmetric Pascal matrix of order n defined
by (1), then det(Sn) = 1, for any positive integer n.
Proof. Let Sn be the symmetric Pascal matrix of order n defined by
(1). By Theorem 2.1, we know that Sn = LnUn, where Ln is the lower
triangular Pascal matrix of order n defined by (2) and Un is the upper
triangular Pascal matrix of order n defined by (3). Since Ln and Un
are triangular matrices, then det(Ln) = 1 and det(Un) = 1. It follows
that det(Sn) = det(LnUn) = det(Ln)det(Un) = 1.
Definition 2.3. [5] Let A and B be n × n matrices. We say that
A is similar to B if there is an invertible n × n matrix P such that
P
−1AP = B.
Theorem 2.4. [1] Let Sn be the symmetric Pascal matrix of order n
defined by (1), then Sn is similar to its inverse S
−1
n
.
This result shows the following property of the eigenvalues of Sn.
Corollary 2.5. [1] Let Sn be the symmetric Pascal matrix of order
n defined by (1). Then the eigenvalues of Sn are pairs of reciprocal
numbers.
Proof. Let Sn be the symmetric Pascal matrix of order n defined by
(1) and λ be an eigenvalue of Sn. Since the det(Sn) = 1, we know Sn
is invertible. It follows that λ 6= 0 and, λ
−1
is an eigenvalue of S
−1
n
.
Since Sn and S
−1
n
are similar by Theorem 2.4, then Sn and S
−1
n have
the same eigenvalues. Hence, λ and λ
−1 are eigenvalues of Sn, and the
eigenvalues of Sn are pairs of reciprocal numbers.
Remark 1. If n is odd, since the eigenvalues must come in pairs, one
of the eigenvalues must be equal to 1.
Example 2.6. The eigenvalues of the symmetric Pascal matrix, S2,
are λ1 =
3 + √
5
2
and λ2 =
3 −

5
2
, where λ1λ2 = 1 gives a reciprocal
pair.
Example 2.7. For n odd, let n = 3. Then the eigenvalues of the symmetric
Pascal matrix, S3, are λ1 = 4+√
15, λ2 = 4−

15, and λ3 = 1.
We note that λ1λ2 = 1 gives a reciprocal pair and λ3 = 1 is a selfreciprocal.
LINEAR ALGEBRA OF PASCAL MATRICES 5
In their paper, A Note on Pascal’s Matrix, Cheon, Kim, and Yoon
found an interesting factorization of the lower triangular Pascal matrix,
Ln.
Theorem 2.8. [4] Let Gk =

In−k OT
O Sk

be a matrix of order n, where Sk is the matrix of order k defined by:
sij =
(
1 if i ≥ j
0 j>i
for every k = 1, 2, ..., n. Then the lower triangular Pascal matrix of
order n can be written as: Ln = GnGn−1 · · · G1.
For example,
L4 =


1 0 0 0 0
1 1 0 0 0
1 1 1 0 0
1 1 1 1 0
1 1 1 1 1




1 0 0 0 0
0 1 0 0 0
0 1 1 0 0
0 1 1 1 0
0 1 1 1 1




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 1 1 0
0 0 1 1 1




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 1 1


=


1 0 0 0 0
1 1 0 0 0
1 2 1 0 0
1 3 3 1 0
1 4 6 4 1


To further our studies of the lower triangular Pascal matrix, we are
interested in studying the inverse of this matrix.
Theorem 2.9. [6] Let Ln be the lower triangular Pascal matrix of order
n defined by (2), then
L
−1
n = ((−1)i−j
lij ).
Proof. We will show that Ln · L
−1
n = In.
By direct multiplication of Ln and L
−1
n we get the ij-th element of the
product:
Xn
k=1
(−1)k−j
liklkj . (5)
LINEAR ALGEBRA OF PASCAL MATRICES 6
If i < j then the element (5) is zero and if i = j, then the element (5)
is 1.
We will show that for i > j, the element (5) is zero.
If i > j, the element is:

i − 1
j − 1
j − 1
j − 1



i − 1
j
 j
j − 1

+ ... + ( − 1)i − j

i − 1
i − 1
i − 1
j − 1

=
=

i − 1
j − 1


i − j
i − j



i − j
i − j − 1

+ ... + ( − 1)i − j

i − j
0


= 0.
Hence, Ln · L
−1
n = In and L
−1
n = ((−1)i−j
lij ) is the inverse of Ln.
There is another unique way in which the inverse of the lower triangular
Pascal matrix can be written, using the Hadamard product of matrices.
Definition 2.10. [8] Let A, B be m × n matrices. The Hadamard
product of A and B is defined by:
[A ◦ B]ij = [A]ij [B]ij , for 1 ≤ i ≤ m, 1 ≤ j ≤ n.
Theorem 2.11. [8] Let τn be a n × n lower triangular matrix defined
below as:
τij =
(
(−1)i−j
if i ≥ j ≥ 1,
0 otherwise
The inverse of the lower triangular matrix can be found using the
Hadamard product:
L
−1
n = Ln ◦ τn
For example, if n = 4, then:
L
−1
4 =


1 0 0 0
−1 1 0 0
1 −2 1 0
−1 3 −3 1

 =


1 0 0 0
1 1 0 0
1 2 1 0
1 3 3 1





1 0 0 0
−1 1 0 0
1 −1 1 0
−1 1 −1 1


3. Inverse of the Pascal Matrix Plus An Integer
In this section we are going to describe the inverse of Ln +kIn where
Ln is the lower triangular matrix of order n defined by (2), In is the
identity matrix and k is a positive integer. We call Ln +kIn the Pascal
matrix plus an integer. First, we are considering the case for k = 1. By
direct computation of the inverse of Ln+In, we can observe that there is
LINEAR ALGEBRA OF PASCAL MATRICES 7
a close relation between the inverse of Ln+In and the Pascal matrix Ln.
For example, for n = 4,
L4 + I4 =


2 0 0 0
1 2 0 0
1 2 2 0
1 3 3 2

,
(L4 + I4)
−1 =


1
2
0 0 0
−1
4
1
2
0 0
0
−1
2
1
2
0
1
8
0
−3
4
1
2

 =


1 0 0 0
1 1 0 0
1 2 1 0
1 3 3 1





1
2
0 0 0
−1
4
1
2
0 0
0
−1
2
1
2
0
1
8
0
−3
4
1
2


In their paper, Explicit Inverse of the Pascal Matrix Plus One, S.L.
Yang and Z.K. Liu showed that the inverse of Ln +In is the Hadamard
product between Ln and a lower triangular matrix. We are going to
describe this unique lower triangular matrix next. For this we need to
define the Euler polynomials.
Euler
0/5000
จาก: -
เป็น: -
ผลลัพธ์ (ไทย) 1: [สำเนา]
คัดลอก!
พีชคณิตเชิงเส้นของเมทริกซ์ปาสกาลเยตส์ลินด์เซย์บทคัดย่อ สามเหลี่ยมปาสมีชื่อเสียงปรากฏในหลายพื้นที่คณิตศาสตร์ ทฤษฎีเลข คณิตศาสตร์เชิงการจัด และพีชคณิตมาจากสามเหลี่ยมนี้ทวินาม coeffi-เมทริกซ์ปาสกาลcients ซึ่งสร้างเมทริกซ์ง่าย ๆ ด้วยคุณสมบัติที่น่าสนใจเราสำรวจคุณสมบัติของเมทริกซ์นี้และค่าผกผันของการปาสกาลเมทริกซ์การบวกเมทริกซ์เอกลักษณ์ครั้งจำนวนเต็มบวกใด ๆ เราต่อไป พิจารณาเมทริกซ์เอกลักษณ์เรียกว่าเมตริกซ์สเตอร์ลิง ซึ่งสามารถ factorized ในเมตริกซ์ปาสกาล1. บทนำโบราณทางคณิตศาสตร์สามเหลี่ยม ปัจจุบันเรียกว่าสามเหลี่ยมปาสกาล เป็นอนันต์เลขตารางที่แสดงในแบบฟอร์มสามเหลี่ยม หมายเลขแสดงในรูปสามเหลี่ยมจะเรียกว่าสัมประสิทธิ์ทวินามnkซึ่งแทนจำนวนวิธีการรับนำผลที่ได้จาก n kไป แต่ละรายการในสามเหลี่ยมจะได้รับ โดยการเพิ่มเข้าด้วยกันรายการที่สองจากแถวด้านบน: ได้โดยตรงทางด้านซ้ายและหนึ่งตรงทางขวา รูปแบบนี้สามารถมองเห็นในภาพด้านล่างสามเหลี่ยมปาสกาลเป็นที่รู้จักในกว่าสิบศตวรรษ ชุดจำนวนที่สามเหลี่ยมปาสกาลถูกเรียกก่อน Blaiseวัน: 5 ธันวาคม 25571พีชคณิตเชิงเส้นของเมทริกซ์ปาสกาล 2ปาสกาล แม้ว่าเขาจะเกิดจาก ด้วยการเป็นคนแรกที่จะเผยแพร่ข้อมูลที่รู้จักสามเหลี่ยมในตำรับของเขา Trait´e du สามเหลี่ยมarithm´etique หมายเลขเดิมเกิดจากศึกษาที่อินเดียคณิตศาสตร์เชิงการจัดและดอกเบี้ยกรีกในหมายเลข figurate เหล่านี้หมายเลขถูกอย่างต่อเนื่องกล่าว โดย mathematicians อิสลามระหว่างคริสต์ศตวรรษ 10 และ ใน ศตวรรษ 11 โดยกวีเปอร์เซียชื่อOmar เคย์ยาม พวกเขายังได้เห็นในจีนในช่วงศตวรรษ 13สามเหลี่ยมปาสกาลถูกเผยแพร่อย่างเป็นทางในตำรับของปาสกาลหลังจากสิ้นพระชนม์ในค.ศ. 1665สามเหลี่ยมนี้เกิดขึ้นในหลายพื้นที่ของคณิตศาสตร์เช่นพีชคณิตความน่าเป็น และคณิตศาสตร์เชิงการจัด เรามีแรงจูงใจ โดยของปาสกาลสามเหลี่ยมความโดดเด่นในด้านคณิตศาสตร์และโปรแกรมประยุกต์หลายตัวในเฉพาะเมทริกซ์ปาสกาล เราต้องการไปศึกษาของเราพิจารณาคุณสมบัติต่าง ๆ และการเชื่อมต่อเฉพาะที่ปาสกาลเมทริกซ์มีการลำดับหมายเลขและฟังก์ชันอื่น ๆ2. เมทริกซ์ปาสกาลสามเหลี่ยมปาสกาลสามารถทับศัพท์เป็นเมตริกซ์ที่ประกอบด้วยสัมประสิทธิ์ทวินามเป็นองค์ประกอบ เราสามารถสร้างได้สามชนิดเมทริกซ์: สมมาตร ล่างสามเหลี่ยม และด้านบน สามเหลี่ยมใด ๆจำนวนเต็ม n > 0ปาสกาลเมทริกซ์สมมาตรของลำดับ n ถูกกำหนด โดย Sn = (sij), ที่sij =i + j − 2เจ− 1สำหรับ i, j = 1, 2,..., n (1)เราสามารถกำหนดล่างสามเหลี่ยมปาสกาลเมตริกซ์ของลำดับ n โดย Ln =(lij), ที่lij =(i−1j−1ถ้าผมเจ≥อื่น ๆ 0(2)กำหนด โดยสหประชาชาติด้านบนสามเหลี่ยมปาสกาลเมตริกซ์ของลำดับ n = (uij),ซึ่งuij =(j−1i−1ถ้า≥เจฉันอื่น ๆ 0(3)พีชคณิตเชิงเส้นของเมทริกซ์ปาสกาล 3เราสังเกตที่สหประชาชาติ = (Ln)Tสำหรับจำนวนเต็มบวก n ใด ๆตัวอย่างเช่น สำหรับ n = 5 ที่เรามี:S5 =1 1 1 1 11 2 3 4 51 3 6 10 151 4 10 20 351 5 15 35 70L5 =1 0 0 0 01 1 0 0 01 2 1 0 01 3 3 1 01 4 6 4 1U5 =1 1 1 1 10 1 2 3 40 0 1 3 60 0 0 1 40 0 0 0 1เมทริกซ์ปาสกาลเหล่านี้มีคุณสมบัติที่น่าสนใจบางอย่าง ซึ่งเรามีต่อไปทฤษฎีบท 2.1 [1] เป็นเมตริกซ์ปาสกาลสมมาตรของลำดับ n Sn ให้กำหนดตาม (1), Ln มีล่างสามเหลี่ยมปาสกาลเมตริกซ์ลำดับ n de-ปรับตาม (2), และสหประชาชาติอยู่บนสามเหลี่ยมปาสกาลเมตริกซ์ของลำดับ nกำหนดตาม (3), แล้ว Sn = LnUnหลักฐานการ Ln เป็นล่างสามเหลี่ยมปาสกาลเมตริกซ์ของ n ใบสั่งที่กำหนดให้ตาม (2) และสหประชาชาติอยู่บนสามเหลี่ยมปาสกาลเมตริกซ์ของ n ลำดับที่กำหนด(3) โดยการคูณของเมทริกซ์ Ln และสหประชาชาติโดยตรง เรารับการองค์ประกอบของ ij แค th ของผลิตภัณฑ์ LnUn:Xnk = 1likukj =Xnk = 1liklkj นับตั้งแต่สหประชาชาติ = (Ln)T.แล้ว Xnk = 1likljk =Xnk = 1ฉัน− 1k − 1เจ− 1k − 1=Xเจk = 1ฉัน− 1k − 1เจ− 1k − 1==Xเจk = 1ฉัน− 1k − 1เจ− 1เจ− kตั้งแต่บานธัท = 0 สำหรับ k > เจรหัสประจำตัว Vandermonde บอกว่า:Xnt = 0mtnn − t=m + nnสำหรับใด ๆ m, n, t ∈ N (4)ให้ m =ฉัน− 1, n = j − 1 และ t = k − 1 ใน (4)แล้ว Xเจk = 1ฉัน− 1k − 1เจ− 1เจ− k=i + j − 2เจ− 1= sij รายการของการสมมาตรปาสกาลเมตริกซ์ Sn. Hence, Sn = LnUn พีชคณิตเชิงเส้นของปาสกาลเมทริกซ์ 4สามารถใช้ผลนี้เพื่อกำหนดว่าดีเทอร์มิแนนต์ของการสมมาตรปาสกาลเมตริกซ์ SnCorollary 2.2 ถ้า Sn ปาสกาลเมทริกซ์สมมาตรของ n ลำดับที่กำหนด(1), แล้ว det(Sn) = 1 สำหรับจำนวนเต็มบวก n ใด ๆหลักฐานการ ให้ Sn เป็นเมตริกซ์ปาสกาลสมมาตรของ n ใบสั่งที่กำหนดโดย(1) โดยทฤษฎีบท 2.1 เรารู้ว่า Sn = LnUn, Ln อยู่ด้านล่างสามเหลี่ยมปาสกาลเมตริกซ์ n ใบสั่งที่กำหนดตาม (2) และสหประชาชาติอยู่บนสามเหลี่ยมปาสกาลเมตริกซ์ของ n ใบสั่งที่กำหนดตาม (3) Ln และสหประชาชาติเมทริกซ์สามเหลี่ยม แล้ว det(Ln) = 1 และ det(Un) = 1 เป็นไปตามที่ det(Sn) = det(LnUn) = det(Ln)det(Un) = 1ข้อกำหนดที่ 2.3 [5] ให้ A และ B เป็นเมทริกซ์ n n × เราบอกว่าคือคล้ายกับ B ถ้าเป็นเมตริกซ์ n × n สามารถหาอินเวอร์ส P ที่P−1AP = B.ทฤษฎีบทที่ 2.4 [1] เป็นเมตริกซ์ปาสกาลสมมาตรของลำดับ n Sn ให้กำหนดตาม (1), แล้ว Sn จะคล้ายการผกผันของ S−1n.ผลลัพธ์นี้แสดงคุณสมบัติต่อไปนี้ของเวกเตอร์ของ SnCorollary 2.5 [1] ให้ Sn เป็นเมตริกซ์ปาสกาลสมมาตรของใบสั่งn ที่กำหนดตาม (1) แล้ว เวกเตอร์ของ Sn คู่ซึ่งกันและกันหมายเลขหลักฐานการ ให้ Sn เป็นเมตริกซ์ปาสกาลสมมาตรของ n ใบสั่งที่กำหนดโดย(1) และλ eigenvalue ของ Sn ตั้งแต่ det(Sn) = 1 เรารู้ว่า Snจะสามารถหาอินเวอร์ส ตามที่ 6 = 0 λและ λ−1เป็นการ eigenvalue ของ S−1n.Sn และ S−1nคล้ายทฤษฎีบท 2.4 แล้ว Sn และ S−1มี nเวกเตอร์ที่เดียวกัน ดังนั้น λλและ−1 เป็นเวกเตอร์ของ Sn และเวกเตอร์ของ Sn มีคู่ของตัวเลขซึ่งกันและกันหมายเหตุ 1 ถ้า n เป็นคี่ เนื่องจากเวกเตอร์ต้องมาเป็นคู่ หนึ่งของเวกเตอร์ต้องได้เท่ากับ 1ตัวอย่างที่ 2.6 เวกเตอร์ของเมทริกซ์ปาสกาลสมมาตร S2มี λ1 =3 + √52และ λ2 =3 −√52ที่ λ1λ2 = 1 ให้คำคู่นี้ตัวอย่างที่ 2.7 สำหรับ n คี่ ให้ n = 3 แล้วเวกเตอร์ของการสมมาตรปาสกาลเมตริกซ์ S3 มี λ1 = 4 + √15, Λ2 = 4−√15 และ λ3 = 1เราทราบที่ λ1λ2 = 1 ให้คู่สัญญาพันธมิตรและ λ3 = 1 คือ selfreciprocalพีชคณิตเชิงเส้นของเมทริกซ์ปาสกาล 5ในการกระดาษ หมายเหตุแมวเมตริกซ์ Cheon คิม และจินเกสท์พบการแยกตัวประกอบที่น่าสนใจของล่างสามเหลี่ยมปาสกาลเมทริกซ์Ln.ทฤษฎีบทที่ 2.8 [4] ให้ Gk =In−k OTO Skเป็นเมทริกซ์ของลำดับ n เมตริกซ์ของ k ใบสั่งที่กำหนดโดย Sk:sij =(1 ถ้าฉันเจ≥0 j > ฉันสำหรับทุก k = 1, 2,..., n แล้วล่างสามเหลี่ยมปาสกาลเมทริกซ์ของสั่ง n สามารถเขียนเป็น: Ln = GnGn−1 ··· G1ตัวอย่างL4 =1 0 0 0 01 1 0 0 01 1 1 0 01 1 1 1 01 1 1 1 11 0 0 0 00 1 0 0 00 1 1 0 00 1 1 1 00 1 1 1 11 0 0 0 00 1 0 0 00 0 1 0 00 0 1 1 00 0 1 1 11 0 0 0 00 1 0 0 00 0 1 0 00 0 0 1 00 0 0 1 1=1 0 0 0 01 1 0 0 01 2 1 0 01 3 3 1 01 4 6 4 1ยิ่งเราศึกษาของปาสกาลเมทริกซ์สามเหลี่ยมล่าง เรามีสนใจศึกษาตัวผกผันของเมทริกซ์นี้ทฤษฎีบท 2.9 [6] ให้ Ln มีล่างสามเหลี่ยมปาสกาลเมตริกซ์ของใบสั่งn ที่กำหนดตาม (2), จากนั้นL−1n = (i−j (−1)lij)หลักฐานการ เราจะแสดงที่· Ln L−1n =โดยคูณตรง Ln และ L−1n ของ ij แค th องค์ประกอบของเราได้ผลิตภัณฑ์:Xnk = 1K−j (−1)liklkj (5)พีชคณิตเชิงเส้นของเมทริกซ์ปาสกาล 6ถ้าฉัน < เจองค์ประกอบ (5) เป็นศูนย์ แล้วถ้าฉัน = j แล้วองค์ประกอบ (5)คือ 1เราจะแสดงว่าหา > เจ องค์ประกอบ (5) เป็นศูนย์ถ้าฉัน > เจ องค์ประกอบคือ:ฉัน− 1เจ− 1เจ− 1เจ− 1−ฉัน− 1เจเจเจ− 1+ ... + ( − 1)i − jฉัน− 1ฉัน− 1ฉัน− 1เจ− 1==ฉัน− 1เจ− 1ผมเจ−ผมเจ−−ผมเจ−ฉัน− j − 1+ ... + ( − 1)i − jผมเจ−0= 0ดังนั้น Ln · L−1n = L และ−1n = (i−j (−1)lij) เป็นค่าผกผันของ Ln.มีวิธีอื่นเฉพาะที่ผกผันของล่างสามเหลี่ยมปาสกาลเมตริกซ์สามารถเขียน ใช้ผลิตภัณฑ์ Hadamard ของเมทริกซ์นิยาม 2.10 [8] ให้ A, B เป็นเมทริกซ์ n × m การ Hadamardผลคูณของ A และ B จะถูกกำหนดโดย:[เป็น◦ B] ij แค = [A] ij แค [B] ij แค สำหรับ 1 ≤ฉัน≤ m, 1 ≤ j ≤ nทฤษฎีบทที่ 2.11 [8] ให้ τn สามารถเป็น n × n ล่างสามเหลี่ยมเมตริกซ์กำหนดด้านล่างเป็น:Τij =(I−j (−1)ถ้าฉัน≥≥ j 1อื่น ๆ 0ตัวผกผันของเมทริกซ์สามเหลี่ยมล่างที่พบโดยใช้การHadamard ผลิตภัณฑ์:L−1n = Ln ◦ τnตัวอย่าง ถ้า n = 4 แล้ว:L−14 =1 0 0 0−1 1 0 01 −2 1 0−1 3 −3 1 =1 0 0 01 1 0 01 2 1 01 3 3 1◦1 0 0 0−1 1 0 01 −1 1 0−1 1 −1 13. ตัวผกผันของเมทริกซ์ปาสกาลบวกจำนวนเต็มในส่วนนี้ เราจะอธิบายค่าผกผันของ Ln + กินที่Ln เป็นเมทริกซ์สามเหลี่ยมล่างของ n ใบสั่งที่กำหนดตาม (2) ในการเมทริกซ์เอกลักษณ์และ k เป็นจำนวนเต็มบวก เราเรียก Ln + กินปาสกาลเมตริกซ์บวกจำนวนเต็ม ครั้งแรก เราจะพิจารณากรณี k = 1 โดยคำนวณค่าผกผัน ของ Ln + ในโดยตรง เราสามารถสังเกตว่า มีพีชคณิตเชิงเส้นของเมทริกซ์ปาสกาล 7ความสัมพันธ์ใกล้ชิดระหว่างค่าผกผัน ของ Ln + ในเมตริกซ์ปาสกาล Ln.ตัวอย่าง สำหรับ n = 4L4 + I4 =2 0 0 01 2 0 01 2 2 01 3 3 2(L4 + I4)−1 =120 0 0−14120 00−12120180−3412 =1 0 0 01 1 0 01 2 1 01 3 3 1◦120 0 0−14120 00−12120180−3412ในการกระดาษ ชัดเจนผกผันของปาสกาลเมตริกซ์บวกหนึ่ง เย็นยางและหลิว Z.K. ชี้ให้เห็นว่าค่าผกผันของ Ln + เป็น Hadamardผลิตภัณฑ์ระหว่าง Ln และเมทริกซ์สามเหลี่ยมล่าง เราจะไปอธิบายเมทริกซ์สามเหลี่ยมล่างนี้เฉพาะต่อไป นี้เราต้องการกำหนด polynomials ออยเลอร์ออยเลอร์
การแปล กรุณารอสักครู่..
ผลลัพธ์ (ไทย) 2:[สำเนา]
คัดลอก!
พีชคณิตเชิงเส้นของปาสคาลเมทริกซ์
LINDSAY YATES
บทคัดย่อ รูปสามเหลี่ยมที่มีชื่อเสียงของปาสคาลจะปรากฏขึ้นในหลายพื้นที่ของคณิตศาสตร์เช่นทฤษฎีจำนวน combinatorics และพีชคณิต. ฝึกอบรมปาสคาลจะได้มาจากสามเหลี่ยมนี้ coeffi- ทวินามcients ซึ่งสร้างเมทริกซ์แบบง่ายๆที่มีคุณสมบัติที่น่าสนใจ. เราสำรวจคุณสมบัติของการฝึกอบรมเหล่านี้และผกผัน ของปาสกาลเมทริกซ์บวกตัวตนครั้งเมทริกซ์จำนวนเต็มบวกใดๆ เราพิจารณาเพิ่มเติมเมทริกซ์ที่ไม่ซ้ำกันเรียกว่าเมทริกซ์สเตอร์ลิงซึ่งสามารถแยกตัวประกอบในแง่ของเมทริกซ์ปาสคาล. 1 บทนำสามเหลี่ยมคณิตศาสตร์โบราณในวันนี้ที่รู้จักกันเป็นรูปสามเหลี่ยมปาสคาลเป็นตารางตัวเลขที่ไม่มีที่สิ้นสุดแสดงในรูปแบบสามเหลี่ยม ตัวเลขที่แสดงในรูปสามเหลี่ยมที่เรียกว่าค่าสัมประสิทธิ์ทวินามn k? ซึ่งหมายถึงจำนวนของวิธีการเลือก k ผลลัพธ์ที่เรียงลำดับจากที่ n เป็นไปได้ แต่ละรายการในรูปสามเหลี่ยมจะได้รับร่วมกันโดยการเพิ่มรายการที่สองจากแถวข้างต้น: หนึ่งตรงไปทางซ้ายและหนึ่งตรงไปทางขวานั้น รูปแบบนี้สามารถมองเห็นได้ในภาพด้านล่าง. สามเหลี่ยมปาสคาลเป็นที่รู้จักกันมานานกว่าสิบศตวรรษ ชุดของตัวเลขที่เป็นรูปสามเหลี่ยมปาสคาลเป็นที่รู้จักกันก่อนที่เบลสวันที่: 5 ธันวาคม 2014 1 พีชคณิตเชิงเส้นของปาสคาลเมทริกซ์ 2 ปาสกาลแม้ว่าเขาจะเป็นโทษกับการเป็นคนแรกที่จะเผยแพร่ข้อมูลที่รู้จักกันเกี่ยวกับรูปสามเหลี่ยมในหนังสือของเขาที่Trait'e du สามเหลี่ยมarithm'etique ตัวเลขเดิมที่เกิดขึ้นจากการศึกษาของอินเดียของ combinatorics และความสนใจของชาวกรีกในจำนวน figurate เหล่านี้ตัวเลขที่มีการพูดคุยอย่างต่อเนื่องโดยนักคณิตศาสตร์อิสลามในช่วงศตวรรษที่10 และในศตวรรษที่ 11 โดยกวีชาวเปอร์เซียชื่อโอมาร์คัยยาม พวกเขาถูกมองว่ายังอยู่ในประเทศจีนในช่วงศตวรรษที่ 13. สามเหลี่ยมปาสคาลถูกตีพิมพ์อย่างเป็นทางการในตำราของปาสคาลในเร็ว ๆ นี้หลังจากการตายของเขาใน 1665 สามเหลี่ยมนี้เกิดขึ้นในหลายพื้นที่ของคณิตศาสตร์เช่นพีชคณิตน่าจะเป็นและ combinatorics เราถูกกระตุ้นโดยปาสคาลมีชื่อเสียงรูปสามเหลี่ยมในสาขาวิชาคณิตศาสตร์และการใช้งานหลายที่ในการฝึกอบรมปาสคาลโดยเฉพาะอย่างยิ่ง เราต้องการที่จะส่งเสริมการศึกษาของเราที่จะต้องพิจารณาคุณสมบัติต่าง ๆ และการเชื่อมต่อที่ไม่ซ้ำกันที่ปาสคาลเมทริกซ์ที่มีฟังก์ชั่นอื่นๆ และลำดับหมายเลข. 2 ปาสคาลเมทริกซ์สามเหลี่ยมปาสคาลสามารถคัดลอกลงในเมทริกซ์ที่มีค่าสัมประสิทธิ์ทวินามเป็นองค์ประกอบของ เราสามารถสร้างสามประเภทของการฝึกอบรม: สมมาตรรูปสามเหลี่ยมที่ต่ำกว่าและรูปสามเหลี่ยมบนสำหรับการใด ๆ จำนวนเต็ม n> 0 เมทริกซ์สมมาตรของปาสกาล n เพื่อที่จะถูกกำหนดโดย Sn = (SIJ) ซึ่งSIJ =? i + เจ - 2 เจ - 1? สำหรับฉัน j = 1, 2, .... , n (1) เราสามารถกำหนดเมทริกซ์สามเหลี่ยมปาสคาลที่ลดลงของการสั่งซื้อโดย n = Ln (Lij) ซึ่งLij = (I-1 J-1? ถ้าฉัน≥ญ0 เป็นอย่างอื่น(2) เมทริกซ์ Pascal บนสามเหลี่ยมของ n เพื่อที่จะถูกกำหนดโดย Un = (Uij) ที่Uij = (J-1 I-1? ถ้าเจ≥ฉัน0 เป็นอย่างอื่น(3) พีชคณิตเชิงเส้นของปาสคาล การฝึกอบรม 3 เราสังเกตเห็นว่า Un = (Ln) T สำหรับจำนวนเต็มบวก n ใด ๆ . ตัวอย่างเช่นสำหรับ n = 5 เรา: S5 =  1 1 1 1 1 1 2 3 4 5 1 3 6 10 15 1 4 10 20 35 1 5 15 35 70  L5 =  1 0 0 0 0 1 1 0 0 0 1 2 1 0 0 1 3 3 1 0 1 4 6 4 1  U5 =  1 1 1 1 1 0 1 2 3 4 0 0 1 3 6 0 0 0 1 4 0 0 0 0 1 เมทริกซ์ปาสกาลเหล่านี้มีบางส่วนคุณสมบัติที่น่าสนใจที่เรานำเสนอต่อไป. ทฤษฎีบท 2.1. [1] ให้ Sn เป็นเมทริกซ์สมมาตรปาสกาลของคำสั่ง n กำหนดโดย (1), Ln เป็นเมทริกซ์สามเหลี่ยมปาสคาลที่ลดลงของการสั่งซื้อ n de- ปรับโดย (2) และยกเลิก เป็นเมทริกซ์สามเหลี่ยมปาสกาลบนของคำสั่ง n กำหนดโดย (3) จากนั้น Sn = LnUn. หลักฐาน Ln อนุญาตเป็นเมทริกซ์สามเหลี่ยมปาสคาลที่ลดลงของการสั่งซื้อ n กำหนดโดย(2) และอูเป็นเมทริกซ์สามเหลี่ยมปาสกาลบนของคำสั่ง n กำหนดโดย(3) โดยคูณโดยตรงของการฝึกอบรม Ln และ Un เราได้รับธาตุเจ-ครั้งของLnUn ผลิตภัณฑ์: Xn k = 1 likukj = Xn k = 1 liklkj ตั้งแต่ Un = (Ln) T. จากนั้น Xn k = 1 likljk = Xn k = 1? ฉัน - 1 k - 1 ?? เจ - 1 k - 1? = X เจk = 1? ฉัน - 1 k - 1 ?? เจ - 1 k - 1? = = X เจk = 1? ฉัน - 1 k - 1 ?? เจ - 1 เจ - k?. ตั้งแต่ lik = 0 สำหรับ k> เจเอกลักษณ์Vandermonde กล่าวว่า: Xn t = 0? มที?? n n - เสื้อ? =? m + n n? สำหรับมใด ๆ n, เสื้อ∈ N (4) ให้ m = ฉัน - 1, n = เจ - 1 และ t = k - 1 ใน (4). แล้ว เอ็กซ์เจk = 1? ฉัน - 1 k - 1 ?? เจ - 1 เจ - k? =? i + เจ - 2 เจ - 1? = SIJ รายการของสมมาตรเมทริกซ์Pascal Sn ดังนั้น Sn = LnUn. พีชคณิตเชิงเส้นของปาสคาลเมทริกซ์ 4 ผลที่ได้นี้สามารถนำมาใช้ในการกำหนดปัจจัยของสมมาตรเมทริกซ์ปาสกาล Sn. ควันหลง 2.2 หาก Sn เป็นเมทริกซ์สมมาตรปาสกาลของคำสั่ง n กำหนดโดย(1) แล้วเดชอุดม (Sn) = 1 สำหรับจำนวนเต็มบวก n ใด ๆ . หลักฐาน ให้ Sn เป็นเมทริกซ์สมมาตรปาสกาลของการสั่งซื้อที่กำหนดโดย n (1) โดยทฤษฎีบท 2.1 เรารู้ว่า Sn = LnUn ที่ Ln จะต่ำกว่าเมทริกซ์สามเหลี่ยมปาสกาลของการสั่งซื้อที่กำหนดโดยn (2) และอูที่ด้านบนเมทริกซ์สามเหลี่ยมปาสกาลของการสั่งซื้อที่กำหนดโดยn (3) ตั้งแต่ Ln และ Un เป็นเมทริกซ์สามเหลี่ยมแล้วเดชอุดม (Ln) = 1 และ det (Un) = 1 มันเป็นไปตามที่เดชอุดม(Sn) = det (LnUn) = det (Ln) เดชอุดม (Un) = 1 ความละเอียด 2.3 [5] ให้ A และ B ได้รับการฝึกอบรม n × n เราบอกว่าเป็นคล้ายกับ B ถ้ามี invertible n × n P เมทริกซ์ดังกล่าวที่ P -1AP = บีทฤษฎีบท2.4 [1] ให้ Sn เป็นเมทริกซ์สมมาตรปาสกาลของคำสั่ง n กำหนดโดย (1) แล้ว Sn จะคล้ายกับการผกผันของ S -1 n. ผลที่ได้นี้แสดงให้เห็นว่าสถานที่ดังต่อไปนี้ค่าลักษณะเฉพาะของ Sn ได้. ควันหลง 2.5 [1] ให้ Sn เป็นเมทริกซ์สมมาตรปาสกาลของคำสั่งn กำหนดโดย (1) แล้วค่าลักษณะเฉพาะของ Sn เป็นคู่ซึ่งกันและกันตัวเลข. หลักฐาน ให้ Sn เป็นเมทริกซ์สมมาตรปาสกาลของการสั่งซื้อที่กำหนดโดย n (1) และλเป็นค่าเฉพาะของ Sn ตั้งแต่เดชอุดม (Sn) = 1 เรารู้ Sn คือ invertible มันตามที่λ 6 = 0 และλ -1 เป็นค่าเฉพาะของเอส-1 n. ตั้งแต่ Sn และ S -1 n มีความคล้ายคลึงกันโดยทฤษฎีบท 2.4 แล้ว Sn และ S -1 n มีค่าลักษณะเฉพาะเดียวกัน ดังนั้นλλและ-1 มีค่าลักษณะเฉพาะของ Sn และค่าลักษณะเฉพาะของSn คู่ของตัวเลขซึ่งกันและกัน. หมายเหตุ 1. ถ้า n เป็นเลขคี่ตั้งแต่ค่าลักษณะเฉพาะจะต้องมาเป็นคู่หนึ่งของค่าลักษณะเฉพาะจะต้องมีค่าเท่ากับ1 ตัวอย่าง 2.6 ค่าลักษณะเฉพาะของเมทริกซ์สมมาตรปาสคาล, S2 มีλ1 = 3 + √ 5 2 และλ2 = 3 - √ 5 2 ที่λ1λ2 = 1 ให้ซึ่งกันและกัน. คู่ตัวอย่าง 2.7 สำหรับ n แปลกให้ n = 3 แล้วค่าลักษณะเฉพาะของสมมาตรเมทริกซ์ปาสกาลS3 เป็นλ1 = 4 + √ 15 λ2 = 4 √ 15 และλ3 = 1 เราทราบว่าλ1λ2 = 1 จะช่วยให้คู่ซึ่งกันและกัน และλ3 = 1 คือ selfreciprocal ได้. พีชคณิตเชิงเส้นของปาสคาลเมทริกซ์ 5 ในกระดาษของพวกเขาหมายเหตุเกี่ยวกับเมทริกซ์ปาสคาล, ชอน, คิมยุนและพบว่าตัวประกอบที่น่าสนใจของเมทริกซ์สามเหลี่ยมปาสคาลที่ต่ำกว่าLn. ทฤษฎีบท 2.8 [4] ขอ Gk =? In-k OT O Sk? เป็นเมทริกซ์ของ n เพื่อที่ Sk เป็นเมทริกซ์ของการสั่งซื้อ k กำหนดโดย: SIJ = (1 ถ้าฉัน≥ญ 0 ญ> ฉันทุกk = 1 . 2, ... , n แล้วเมทริกซ์สามเหลี่ยมปาสคาลที่ต่ำกว่าของn เพื่อสามารถเขียนเป็น:. Ln = GnGn-1 ··· G1 ตัวอย่างเช่นL4 =  1 0 0 0 0 1 1 0 0 0 1 1 1 0 0 1 1 1 1 0 1 1 1 1 1  1 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 1 1 1  1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 1 1 1   1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 1  =  1 0 0 0 0 1 1 0 0 0 1 2 1 0 0 1 3 3 1 0 1 4 6 4 1 เพื่อส่งเสริมการศึกษาของเราของเมทริกซ์สามเหลี่ยมปาสคาลที่ต่ำกว่าที่เรามีความสนใจในการศึกษาผกผันของเมทริกซ์นี้. ทฤษฎีบท 2.9. [6 ] ให้ Ln เป็นเมทริกซ์สามเหลี่ยมปาสคาลที่ลดลงของการสั่งซื้อn กำหนดโดย (2) จากนั้นL -1 n = ((-1) ฉันเจLij). หลักฐาน. เราจะแสดงให้เห็นว่า Ln · L -1 n = ในโดยคูณโดยตรงของ Ln และ L -1 n เราได้รับองค์ประกอบ IJ-ชั้นของผลิตภัณฑ์: Xn k = 1 (-1) k-เจ. liklkj (5) พีชคณิตเชิงเส้นของปาสคาลเมทริกซ์ 6 ถ้า i <เจแล้วองค์ประกอบ (5) เป็นศูนย์และถ้าฉัน = เจแล้วองค์ประกอบ (5) คือ 1. เราจะแสดงให้เห็นว่า i> เจองค์ประกอบ (5) เป็นศูนย์. ถ้าฉัน> เจองค์ประกอบคือ? ฉัน - 1 เจ - 1 ?? เจ - 1 เจ - 1? -? ฉัน - 1 เจ?? เจเจ - 1? + ... + (- 1) ฉัน - เจ? ฉัน - 1 ฉัน - 1 ?? ฉัน - 1 เจ - 1? = =? ฉัน - 1 เจ - 1? ?? ฉัน - เจฉัน- เจ? -? ฉัน - เจฉัน- เจ - 1? + ... + (- 1) ฉัน - เจ? ฉัน - เจ0?? = 0 ดังนั้น Ln · L -1 n = ในและ L -1 n = ((-1) ฉันเจLij) เป็นผกผันของ Ln ได้. มีเป็นอีกวิธีที่ไม่ซ้ำกันในการที่ผกผันของรูปสามเหลี่ยมที่ต่ำกว่าเมทริกซ์ Pascal สามารถเขียนได้โดยใช้ผลิตภัณฑ์ Hadamard ของเมทริกซ์. ความละเอียด 2.10 [8] ให้ A, B เป็นเมทริกซ์ม. × n Hadamard ผลิตภัณฑ์ของ A และ B จะถูกกำหนดโดย:. [A ◦ B] เจ = [A] เจ [B] เจ, 1 ≤≤ฉัน m 1 ≤≤ n ญทฤษฎีบท2.11 [8] ขอτnเป็น× n เมทริกซ์สามเหลี่ยมที่ต่ำกว่าที่กำหนดไว้ด้านล่าง: τij = ((-1) I-ญถ้าฉัน≥ญ≥ 1, 0 อื่นผกผันของเมทริกซ์สามเหลี่ยมที่ต่ำกว่าที่สามารถพบได้โดยใช้ผลิตภัณฑ์Hadamard: L -1 n = Ln ◦τnตัวอย่างเช่นถ้าn = 4 แล้ว: L -1 4 =  1 0 0 0 -1 1 0 0 1 1 0 -2 -1 3 -3 1   =  1 0 0 0 1 1 0 0 1 2 1 0 1 3 3 1 ◦ 1 0 0 0 -1 1 0 0 1 1 0 -1 -1 1 -1 1  3. ผกผันของปาสกาลเมทริกซ์พลัสจำนวนเต็มในส่วนนี้เราจะไปอธิบายผกผันของLn + ญาติที่Ln เป็นเมทริกซ์สามเหลี่ยมต่ำของการสั่งซื้อที่กำหนดโดย n (2), ในการเป็นเมทริกซ์เอกลักษณ์และ k เป็นจำนวนเต็มบวก. เราเรียก Ln + ญาติปาสกาลเมทริกซ์บวกจำนวนเต็ม. ครั้งแรกที่เรากำลังพิจารณากรณีสำหรับ k = 1 โดยการคำนวณโดยตรงของผกผันของLn + ใน, เราสามารถสังเกตว่ามีพีชคณิตเชิงเส้นของปาสคาลเมทริกซ์ 7 ความสัมพันธ์ที่ใกล้ชิดระหว่างผกผันของ Ln + ในเมทริกซ์และปาสกาล Ln. ตัวอย่างเช่นสำหรับ n = 4, L4 + I4 =  2 0 0 0 1 2 0 0 1 2 2 0 1 3 3 2 , (L4 + I4) -1 =  1 2 0 0 0 -1 4 1 2 0 0 0 -1 2 1 2 0 1 8 0 -3 4 1 2  =  1 0 0 0 1 1 0 0 1 2 1 0 1 3 3 1 ◦ 1 2 0 0 0 -1 4 1 2 0 0 0 -1 2 1 2 0 1 8 0 -3 4 1 2 ในกระดาษของพวกเขาชัดเจนผกผันของเมทริกซ์Pascal Plus One, SL ยางและ ZK หลิวแสดงให้เห็นว่าผกผันของ Ln + ในการเป็น Hadamard สินค้าระหว่าง Ln และเมทริกซ์สามเหลี่ยมที่ต่ำกว่า พวกเราจะไปอธิบายเมทริกซ์สามเหลี่ยมที่ต่ำกว่านี้ไม่ซ้ำกันต่อไป สำหรับวันนี้เราจำเป็นที่จะต้องกำหนดหลายชื่อออยเลอร์. ออยเลอร์ (L4 + I4) -1 =  1 2 0 0 0 -1 4 1 2 0 0 0 -1 2 1 2 0 1 8 0 -3 4 1 2  =  1 0 0 0 1 1 0 0 1 2 1 0 1 3 3 1 ◦ 1 2 0 0 0 -1 4 1 2 0 0 0 -1 2 1 2 0 1 8 0 -3 4 1 2 ในกระดาษของพวกเขาชัดเจนผกผันของเมทริกซ์Pascal Plus One, SL ยางและ ZK หลิวแสดงให้เห็นว่าผกผันของ Ln + ในการเป็น Hadamard สินค้าระหว่าง Ln และเมทริกซ์สามเหลี่ยมที่ต่ำกว่า พวกเราจะไปอธิบายเมทริกซ์สามเหลี่ยมที่ต่ำกว่านี้ไม่ซ้ำกันต่อไป สำหรับวันนี้เราจำเป็นที่จะต้องกำหนดหลายชื่อออยเลอร์. ออยเลอร์ (L4 + I4) -1 =  1 2 0 0 0 -1 4 1 2 0 0 0 -1 2 1 2 0 1 8 0 -3 4 1 2  =  1 0 0 0 1 1 0 0 1 2 1 0 1 3 3 1 ◦ 1 2 0 0 0 -1 4 1 2 0 0 0 -1 2 1 2 0 1 8 0 -3 4 1 2 ในกระดาษของพวกเขาชัดเจนผกผันของเมทริกซ์Pascal Plus One, SL ยางและ ZK หลิวแสดงให้เห็นว่าผกผันของ Ln + ในการเป็น Hadamard สินค้าระหว่าง Ln และเมทริกซ์สามเหลี่ยมที่ต่ำกว่า พวกเราจะไปอธิบายเมทริกซ์สามเหลี่ยมที่ต่ำกว่านี้ไม่ซ้ำกันต่อไป สำหรับวันนี้เราจำเป็นที่จะต้องกำหนดหลายชื่อออยเลอร์. ออยเลอร์





































































































































































































































































































































































































































































































































การแปล กรุณารอสักครู่..
ผลลัพธ์ (ไทย) 3:[สำเนา]
คัดลอก!
พีชคณิตเชิงเส้นของปาสกาล เมทริกซ์
Lindsay เยตส์
นามธรรม สามเหลี่ยมของปาสคาลที่มีชื่อเสียงปรากฏในหลายพื้นที่ของ
คณิตศาสตร์ เช่น ทฤษฎีตัวเลข คณิตศาสตร์เชิงการจัด ปาสกาล เมทริกซ์และพีชคณิต .
มาจากสามเหลี่ยมนี้ของการแจกแจงทวินาม coeffi -
cients ซึ่งสร้างเมทริกซ์ง่ายด้วยคุณสมบัติที่น่าสนใจ .
เราสำรวจคุณสมบัติของเมทริกซ์และผกผันของปาสคาล
เมทริกซ์เมตริกซ์เอกลักษณ์ครั้งบวกบวกจำนวนเต็ม เราพิจารณาเฉพาะ
เพิ่มเติมที่เรียกว่าเมทริกซ์เมทริกซ์สเตอร์ลิงซึ่ง
สามารถปัจจัยในแง่ของเมทริกซ์ปาสคาล .
1 บทนำ
สามเหลี่ยมคณิตศาสตร์โบราณ วันนี้ที่รู้จักกันเป็นสามเหลี่ยมปาสคาลคือ
อนันต์เลขโต๊ะแทนในรูปแบบสามเหลี่ยม ตัวเลข
แสดงในสามเหลี่ยมเรียกว่าสัมประสิทธิ์ทวินาม
,n
k


 ซึ่งเป็นตัวแทนของจำนวนวิธีเลือก K เรียงลําดับผลจาก N
ความเป็นไปได้ แต่ละรายการในสามเหลี่ยมได้เพิ่มกัน
2 รายการจากแถวข้างบน : หนึ่งโดยตรง แล้ว
หนึ่งโดยตรงด้านขวา ; รูปแบบนี้สามารถเห็นได้ในรูปข้างล่าง
สามเหลี่ยมปาสคาลได้รู้จักมานานกว่าสิบศตวรรษ ชุด
ตัวเลขที่ฟอร์มสามเหลี่ยมปาสคาลเป็นที่รู้จักก่อนเบลส
วันที่ : 5 ธันวาคม 2014 .
1
พีชคณิตเชิงเส้นของปาสกาล เมทริกซ์ 2
ปาสคาล แม้ว่าเขาจะประกอบเป็นคนแรกที่จะเผยแพร่
ข้อมูลรู้จักเกี่ยวกับสามเหลี่ยมในตำราของเขา คุณลักษณะใหม่และดูสามเหลี่ยม
arithm ใหม่ etique . ตัวเลขสร้างสรรค์เกิดขึ้นจาก
อินเดียศึกษาในคณิตศาสตร์เชิงการจัดและกรีกสนใจๆจำนวนมากรูปร่าง . ตัวเลขเหล่านี้ถูกกล่าวถึงโดยนักคณิตศาสตร์อิสลามอย่างต่อเนื่อง

ในศตวรรษที่ 10 และในศตวรรษที่ 11 โดยเปอร์เซียกวีชื่อ
โอมาร์ คัยยาม . พวกเขายังพบในประเทศจีนในช่วงศตวรรษที่ 13 .
สามเหลี่ยมปาสคาลคือได้รับการเผยแพร่อย่างเป็นทางการในปาสคาลตำรา
ในไม่ช้าหลังจากการตายของเขาในปี ค.ศ. 1665 .
สามเหลี่ยมนี้เกิดขึ้นในหลายพื้นที่ของคณิตศาสตร์เช่นพีชคณิต
ความน่าจะเป็น และคณิตศาสตร์เชิงการจัด . เราถูกกระตุ้นโดยปาสคาล
สามเหลี่ยมโดดเด่นในสาขาคณิตศาสตร์ประยุกต์และมากของมัน
ในเมทริกซ์ ปาสคาล โดยเฉพาะ เราต้องการศึกษาเพิ่มเติมของเรา
เพื่อพิจารณาคุณสมบัติต่างๆและการเชื่อมต่อเฉพาะที่ภาษาปาสคาล
เมทริกซ์มีฟังก์ชั่นอื่น ๆและหมายเลขลำดับ .
2ปาสกาล เมทริกซ์สามเหลี่ยมปาสคาล
สามารถถูกคัดลอกลงในเมทริกซ์ที่มีสัมประสิทธิ์ทวินาม
เป็นองค์ประกอบของ เราสามารถสร้างสามประเภทของ
เมทริกซ์ : สมมาตรสามเหลี่ยมล่างและบนสามเหลี่ยมสำหรับจำนวนเต็ม n >
0
สมมาตร ปาสกาล เมทริกซ์เพื่อ n กำหนดโดย SN = ( sij ) ซึ่ง sij =


ผม  J − 2
J

 − 1 สำหรับผม J = 1 , 2 , . . . , n ( 1 )
เราสามารถกำหนดเมทริกซ์ปาสคาลสามเหลี่ยมล่างเพื่อ n โดย LN =
( lij ) ซึ่ง lij =


ผม− 1
J

ถ้าผม  − 1 ≥ J
0
( 2 ) มิฉะนั้น
บนสามเหลี่ยมปาสคาลเมทริกซ์เพื่อ n ถูกนิยามโดยสหประชาชาติ = ( uij ) ที่ uij =


, J (

ผม− 1 − 1

ถ้า  J ≥ผม
0
( 3 ) มิฉะนั้น
พีชคณิตเชิงเส้นของปาสกาล เมทริกซ์ 3
เราสังเกตเห็นว่า a = ( LN )
T
, .
จำนวนเต็มบวกใดเช่น n = 5 เรา :



 S5 =1 1 1 1 1
1 2 3 4 5
1 3 5 10 15 20 35

1 4 10 1 5 15 35 70


L5 =


1 0 0 0 0 1 1 0 0
0
1
0 2 1 0 1 3 3 1 0
1 4 6 4 1


 u5 =


1 1 1 1 1 1 2 3 4
0
0 0 1 3 6
0 0 0 0 0 0 0 0 1 4



เหล่านี้ ปาสกาล เมทริกซ์ มีบางอย่างน่าสนใจ คุณสมบัติ ซึ่งเราเสนอ
ต่อไป
ทฤษฎีบท 2.1 . [ 1 ] ขอ SN เป็นเมตริกซ์สมมาตรของปาสคาลเพื่อ n
นิยามโดย ( 1 )
การแปล กรุณารอสักครู่..
 
ภาษาอื่น ๆ
การสนับสนุนเครื่องมือแปลภาษา: กรีก, กันนาดา, กาลิเชียน, คลิงออน, คอร์สิกา, คาซัค, คาตาลัน, คินยารวันดา, คีร์กิซ, คุชราต, จอร์เจีย, จีน, จีนดั้งเดิม, ชวา, ชิเชวา, ซามัว, ซีบัวโน, ซุนดา, ซูลู, ญี่ปุ่น, ดัตช์, ตรวจหาภาษา, ตุรกี, ทมิฬ, ทาจิก, ทาทาร์, นอร์เวย์, บอสเนีย, บัลแกเรีย, บาสก์, ปัญจาป, ฝรั่งเศส, พาชตู, ฟริเชียน, ฟินแลนด์, ฟิลิปปินส์, ภาษาอินโดนีเซี, มองโกเลีย, มัลทีส, มาซีโดเนีย, มาราฐี, มาลากาซี, มาลายาลัม, มาเลย์, ม้ง, ยิดดิช, ยูเครน, รัสเซีย, ละติน, ลักเซมเบิร์ก, ลัตเวีย, ลาว, ลิทัวเนีย, สวาฮิลี, สวีเดน, สิงหล, สินธี, สเปน, สโลวัก, สโลวีเนีย, อังกฤษ, อัมฮาริก, อาร์เซอร์ไบจัน, อาร์เมเนีย, อาหรับ, อิกโบ, อิตาลี, อุยกูร์, อุสเบกิสถาน, อูรดู, ฮังการี, ฮัวซา, ฮาวาย, ฮินดี, ฮีบรู, เกลิกสกอต, เกาหลี, เขมร, เคิร์ด, เช็ก, เซอร์เบียน, เซโซโท, เดนมาร์ก, เตลูกู, เติร์กเมน, เนปาล, เบงกอล, เบลารุส, เปอร์เซีย, เมารี, เมียนมา (พม่า), เยอรมัน, เวลส์, เวียดนาม, เอสเปอแรนโต, เอสโทเนีย, เฮติครีโอล, แอฟริกา, แอลเบเนีย, โคซา, โครเอเชีย, โชนา, โซมาลี, โปรตุเกส, โปแลนด์, โยรูบา, โรมาเนีย, โอเดีย (โอริยา), ไทย, ไอซ์แลนด์, ไอร์แลนด์, การแปลภาษา.

Copyright ©2024 I Love Translation. All reserved.

E-mail: