Abstract
Flooding
is
one
of
the
most
destructive
natural
hazards
that
cause
damage
to
both
life
and
property
every
year,
and therefore the development of flood model to determine inundation area in watersheds is important for decision makers. In recent years, data mining approaches such as artificial neural network (ANN) techniques are being increasingly used for flood modeling. Previously, this ANN method was frequently used for hydrological and flood modeling by taking rainfall as input and runoff data as output, usually without taking into consideration of other flood causative factors. The specific objective of this study is to develop a flood model using various flood causative factors using ANN techniques and geographic information system (GIS) to modeling and simulate flood-prone areas in the southern part of Peninsular Malaysia. The ANN model for this study was developed in MATLAB using seven flood causative factors. Relevant thematic layers (including rainfall, slope, elevation, flow accumulation, soil, land use, and geology) are generated using GIS, remote sensing data,