THREE WORLDS OF MATHEMATICS
The theory of three worlds of mathematics is now formulated in detail in the book How Humans Learn to Think Mathematically. This offers a framework for the development of mathematical thinking based on perception developing subtly in sophistication through the mental world of conceptual embodiment, operation developing through actions that become mathematical operations in a world of operational symbolism and increasingly subtle use of verbal reason that leads to formal aspects of embodiment and symbolism and eventually to a world of axiomatic formalism. The development takes account of the individual's previous experience which may operate successfully in one context yet remain supportive or become problematic in another, giving rise to emotional reactions to mathematics, leading to a spectrum of success and failure over the longer term. The book starts with the newborn child and traces the development of mathematical thinking throughout school, university and on to the frontiers of research.
Recent published paper summarizing the ideas
My whole life in mathematics education has been devoted to understanding the growth of mathematics at all ages with differing individuals. In my research, I found three fundamentally different ways of operation, one through physical and mental embodiment, including action and the use of visual and other senses, a second through the use of mathematical symbols that operate as process and concept (procepts) in arithmetic, algebra and symbolic calculus, and a third using formal language in increasingly sophisticated formal mathematics in advanced mathematical thinking. As I considered the whole range of mathematical thinking, I began to realise that the notion of three different worlds of mathematics:
(conceptual) embodied
(proceptual) symbolic
(axiomatic) formal
offered a useful categorisation for different kinds of mathematical context. Each has its own individual style of cognitive growth, each has a different way of using language and together they cover a wide range of mathematical activity. An outline of the origins of the theory can be found here and more information (published in For the Learning of Mathematics, 2004) here.
Specific applications of the theory in different contexts are also available: in calculus/analysis given in Rio de Janiero, the Overheads for a recent talk in Bogota, the role of the three different worlds in proof from a presentation in Taipei, and a paper on the three different worlds for the concept of vector, with Anna Watson and Takis Spirou.
Further developments of the theory are reported in presentations given on mathematical learning from childhood to adulthood and the transition from embodiment and symbolism to formal proof. Several invited keynotes for different international audiences are below.
Over time the framework has been developed to take into account genetic aspects which are 'set-before' our birth and cognitive development building experiences 'met-before' in one's development.
The three major set-befores are:
recognition (of similarities, differences and patterns) that may be categorised to give new thinkable concepts,
repetition (of sequences of actions) that may be routinised into automatic procedures,
language, that enables categorisation of thinkable concepts, encapsulation of actions as symbols that can act flexibly as process to do or concept to think about and definition of mathematical structures in a formal sense.
These set-befores lead to the development of each of the three worlds of mathematics which grow more sophisticated and interconnected as the individual matures.
For many learners, algebra only gets as far as the use of procedural techniques (e.g. Lima & Tall, 2008) which show little sign of flexibility in the meaning of symbols as process and concept. Instead, the symbols are 'shifted around' in a way which we term 'procedural embodiment' which involves an imagined movement of symbols, accompanied by a touch of 'magic' to get the right answer (for instance, 'move the term to the other side of the equation and change its sign').
In the later years of secondary school, the introduction of definitions in geometry and the 'rules of arithmetic' in algebra' can lead to formal embodiment in geometry and formal symbolism in arithmetic and algebra, giving a framework as follows:
three worlds