This paperdetailsthefatiguelifepredictionmodelforweldingcomponentsbasedonhybridintelligent
technology.Wemakeuseofthecapabilitiesandadvantagesofroughsettheory,particleswarmopti-
mization (PSO)algorithmandBPneuralnetworkforestablishingofthefatiguelifepredictionmodel.
Firstly,roughsettheorywasusedtodealwiththeoriginalfatiguesampledata;theminimumfatigue
feature subsetwasobtained.Secondly,improvedPSOalgorithmwasusedtooptimizetheinitialweighs
and thresholdsoftheBPneuralnetwork,whichresolvessuchproblemsaslocalextremumandslow
convergencethatexistinthetraditionalBPneuralnetwork.Atlast,minimumreducedsubsetwasin-
putted intotheoptimizedBPneuralnetworktoconstructthenovelfatiguelifepredictionmodelfor
welding componentsbythecontinuoustrainingandadjusting.Sampledataofthetitaniumalloywelded
joints wasusedtoverifythecorrectnessandvalidityofthenovelfatiguelifepredictionmodel,simu-
lation resultsshowthatthefatiguelifepredictionmodelproposedinthispaperhasbetterfaulttoler-
ance, higherprecision,andcan fitting fatiguelifevaluemoreaccuratelythantraditionalBPmodel.
Consequently,themodelbasedonhybridintelligenttechnologycanprovideaneffectivenewapproach
to predictthefatiguelifeofweldedjoints.
This paperdetailsthefatiguelifepredictionmodelforweldingcomponentsbasedonhybridintelligenttechnology.Wemakeuseofthecapabilitiesandadvantagesofroughsettheory,particleswarmopti-mization (PSO)algorithmandBPneuralnetworkforestablishingofthefatiguelifepredictionmodel.Firstly,roughsettheorywasusedtodealwiththeoriginalfatiguesampledata;theminimumfatiguefeature subsetwasobtained.Secondly,improvedPSOalgorithmwasusedtooptimizetheinitialweighsand thresholdsoftheBPneuralnetwork,whichresolvessuchproblemsaslocalextremumandslowconvergencethatexistinthetraditionalBPneuralnetwork.Atlast,minimumreducedsubsetwasin-putted intotheoptimizedBPneuralnetworktoconstructthenovelfatiguelifepredictionmodelforwelding componentsbythecontinuoustrainingandadjusting.Sampledataofthetitaniumalloyweldedjoints wasusedtoverifythecorrectnessandvalidityofthenovelfatiguelifepredictionmodel,simu-lation resultsshowthatthefatiguelifepredictionmodelproposedinthispaperhasbetterfaulttoler-ance, higherprecision,andcan fitting fatiguelifevaluemoreaccuratelythantraditionalBPmodel.Consequently,themodelbasedonhybridintelligenttechnologycanprovideaneffectivenewapproachto predictthefatiguelifeofweldedjoints.
การแปล กรุณารอสักครู่..
