These results show that tighter noise regulation under a cumulative constraint hurts airline
passengers, with the impact operating through two channels. Flight frequency falls, reducing
service quality, and fares rise, so that the cost of travel escalates as it convenience declines.
For tighter regulation to be desirable, these losses must be offset by social gains from a lower
noise level, as analyzed below.14
3.2. Sequential choice under a cumulative constraint
Using the simultaneous-choice case as a benchmark, consider now the case where frequencies
and fares are chosen sequentially. Under sequential choice, fares are set conditional on
frequencies, with frequencies then chosen in a first stage, taking into account the second-stage
impact on fares.
To analyze this case, the first-order condition for choice of p1 (eq. (9)) is supplemented
with the analogous condition for airline 2, gotten by reversing the 1 and 2 subscripts in (9).
The equations are then solved for p1 and p2 as functions of f1 and f2. The solution for p1 is
given by
p1 = α/2 + τ − 1
3
γ
f1
− γ
f2
+
2f1 + f2
L
, (14)
and the p2 solution is gotten by reversing the 1 and 2 subscripts. These solutions are substituted
into the profit function (8) for airline 1, which is differentiated with respect to f1 treating f2 as
parametric. Symmetry is imposed in the resulting first-order condition, which is then solved
for f.15 The result is
f =
γ
3θ + /L
, (15)
which differs from (12) by the presence of the factor 3, rather than 2, in the denominator.
Thus, for a given L, frequency is smaller in the sequential-choice case. The p solution in (11),
which remains relevant, shows that the smaller f leads to a lower fare under sequential choice.
In addition, the lower f leads to a smaller aircraft size, and aircraft are also noisier under
sequential choice (the 2 factor in (13) is replaced by 3).
Despite these differences, the timing of airline decisions has no effect on the main
comparative-static properties of the equilibrium. In particular, it is easy to see that the change
12
in the f solution leaves the signs in Table 1 unaffected, so that the table applies to both the
sequential and simultaneous-choice cases.16
The key conclusions of the preceding analysis are then summarized as follows:
Proposition 1. A reduction in the allowed noise level under a cumulative noise
constraint leads to lower flight frequency, larger and quieter aircraft, and a higher fare,
regardless of whether airline choices are simultaneous or sequential. Airline passengers
are hurt by the tighter noise limit.
3.3. The case of a per-aircraft noise constraint
Suppose now that noise regulation takes the form of a per-aircraft noise constraint, written
as ni ≤ n, i = 1, 2. Since the constraint will bind, airline 1’s objective function is given by (8)
with n1 replaced by n. Under simultaneous choice, the previous first-order condition (9) for p1
remains relevant, but with L replaced by f1n. Imposing symmetry, the fare solution is then
p = α/2 + τ + /n, (16)
which corresponds to the previous solution in (11) after substitution for L. This equivalence
implies that, if L under the cumulative constraint is set so that noise per aircraft in (13) is
equal to n, the same fare levels emerge under the two regimes.
The first-order condition for f1 is now
∂π1
∂f1
=
γ(p1 − τ − /n)
αf2
1
− θ = 0, (17)
and, substituting (16), it yields a symmetric frequency solution of
f =
γ
2θ
. (18)
Under sequential choice, which is analyzed by following the same steps as before, the fare
solution in (16) remains relevant but frequency is given by
f =
γ
3θ
, (19)
13
where a factor of 3 replaces the 2 in the simultaneous solution, as in the cumulative case.17
Under both the simultaneous and sequential solutions, frequency is increasing in γ and
decreasing in θ, as in the cumulative case. But frequency does not depend on n and is thus
independent of the stringency of the noise constraint, in contrast to the cumulative case. With
f independent of the noise limit, nf and thus total noise L rises as n is raised, and L rises
with γ and falls with θ, holding n fixed. In addition, since the fare solution in (16) does not
involve f, p is now independent of γ and θ, although the fare responds positively to α and
τ , as before. These comparative-static effects are summarized in Table 2. Airline passengers
are hurt, as in the cumulative case, by a tighter noise constraint, but the effect now operates
through a single channel, a higher fare, with service quality unchanged.18
As in the cumulative case, sequential choice yields a higher frequency and smaller aircraft
size than simultaneous choice. But since p is independent of f, fare levels are the same under
the two choice scenarios, in contrast to the previous conclusion.
A more interesting observation, however, is that frequency is always higher under a peraircraft
noise constraint than in the cumulative case, with the opposite conclusion applying to
aircraft size. These results follow because the simultaneous frequency solution in (18) is larger
than the corresponding cumulative solution (12), with the same comparison applying to the
sequential solutions (19) and (15). Apparently, lower frequencies arise in the cumulative case
because a reduction in f provides a means of satisfying the cumulative constraint.
Summarizing the main conclusions of the above analysis yields
Proposition 2. (i) A reduction in the allowed noise level under a per-aircraft constraint
raises the fare, harming airline passengers, while having no effect on flight
frequency or aircraft size. Total noise falls.
(ii) Flight frequency is always higher and aircraft size lower under a per-aircraft noise
constraint than under a cumulative constraint, but fares are identical in the two cases
when the constraints are set to achieve the same noise per aircraft.
3.4. The monopoly case
In the monopoly case, analyzed by Girvin (2006a), different comparative-static results
emerge. Although closed-form solutions for the decision variables are not available, her analysis
14
shows that a tightening of the cumulative noise constraint reduces flight frequency, as in
Proposition 1. A lower L also affects traffic q, which no longer assumes the constant equilibrium
value of 1/2, causing it to drop. With f and q both falling, the change in aircraft size is
ambiguous, and the same conclusion applies to aircraft quietness and the fare. Under a peraircraft
noise constraint, a reduction in n lowers f, in contrast to Proposition 2, while also
reducing traffic. In addition, aircraft size falls. These conclusions show that the duopoly and
monopoly equilibria have very different properties.
บังคับเสียงที่สัดภายใต้สายเจ็บสะสมข้อจำกัดการแสดงผลเหล่านี้ผู้โดยสาร ผลกระทบที่ปฏิบัติผ่านสองช่องทาง ความถี่ของเที่ยวบินลดลง ลดลงคุณภาพ และค่าโดยสารเพิ่มขึ้น เพื่อให้รายงานของต้นทุนการเดินทางตามความสะดวกลดอัตราการสำหรับระเบียบสัดจะปรารถนา ความสูญเสียเหล่านี้ต้องออฟเซ็ต โดยกำไรสังคมที่ต่ำกว่าระดับเสียงรบกวน เป็น below.14 วิเคราะห์3.2 การลำดับตัวเลือกภายใต้ข้อจำกัดในการสะสมตอนนี้ใช้กรณีเกิดทางเลือกที่เป็นเกณฑ์มาตรฐาน พิจารณากรณีที่ความถี่และราคาค่าโดยสารจะถูกเลือกตามลำดับ ภายใต้ตัวเลือกตามลำดับ อัตราค่าโดยสารจะตั้งเงื่อนไขในความถี่ ด้วยความถี่ที่เลือกแล้ว ในระยะแรก คำนึงถึงขั้นตอนที่สองส่งผลกระทบกับราคาค่าโดยสารการวิเคราะห์กรณีนี้ เงื่อนไขใบสั่งแรกสำหรับเลือกของ p1 เสริม (eq. (9))มีคู่สำหรับสาย 2 อากาศ โดยกลับตัวห้อย 1 และ 2 ใน (9)สมการแล้วจะแก้ไขให้ p1 และ p 2 เป็นฟังก์ชัน f1 และ f2 เป็นโซลูชั่นสำหรับ p1กำหนดโดยp1 =ด้วยกอง ทัพ/2 + τ− 13Γf1−Γf2+2 f1 + f2L, (14และโซลูชั่น p 2 คืออากาศ โดยกลับตัวห้อย 1 และ 2 โซลูชั่นเหล่านี้จะแทนเป็นกำไรฟังก์ชัน (8) สำหรับสาย 1 ซึ่งจะแตกต่างกันกับ f1 รักษา f2 เป็นพาราเมตริก สมมาตรถูกกำหนดในเงื่อนไขแรกสั่งได้ ซึ่งเป็นแก้ไขแล้วสำหรับผลที่ได้คือ f.15f =Γ3Θ + /L, (15ซึ่งแตกต่างจาก (12) โดยสถานะของตัว 3 มากกว่า 2 ในตัวหารดังนั้น สำหรับ L กำหนด ความถี่ได้ในกรณีเลือกตามลำดับ การแก้ปัญหา p ใน (11),ที่ยังคงเกี่ยวข้อง แสดงว่า f มีขนาดเล็กที่นำไปสู่ค่าโดยสารต่ำภายใต้ตัวเลือกตามลำดับนอกจากนี้ f ต่ำกว่าเป้าหมายขนาดเครื่องบินเล็ก และเครื่องบินสามารถ noisier ภายใต้เลือกตามลำดับ (สัดส่วน 2 ใน (13) ถูกแทนที่ ด้วย 3)แม้ มีความแตกต่างเหล่านี้ ช่วงเวลาของการตัดสินใจของสายการบินไม่มีผลบนคงเปรียบเทียบคุณสมบัติของสมดุล โดยเฉพาะอย่างยิ่ง ซึ่งง่ายต่อการดูที่การเปลี่ยนแปลง12ใน f โซลูชันออกจากสัญญาณในตารางที่ 1 ผลกระทบ เพื่อให้ตารางใช้กับทั้งการcases.16 ตามลำดับ และทาง เลือกพร้อมบทสรุปของหลักการวิเคราะห์ก่อนหน้านี้จะสรุปแล้วดังนี้:ข้อเสนอที่ 1 ลดระดับเสียงที่ได้รับอนุญาตภายใต้เสียงสะสมข้อจำกัดที่นำไปสู่ลดความถี่เที่ยวบิน เครื่องบินขนาดใหญ่ และเงียบสงบ และค่า โดยสารที่สูงไม่ว่าว่าสายการบินเลือกได้พร้อมกัน หรือตามลำดับ ผู้โดยสารสายการบินเจ็บ ด้วยวงเงินเสียงสัด3.3.กรณีต่อเครื่องเสียงจำกัดสมมติที่ควบคุมเสียงใช้รูปแบบของการต่อเครื่องบินเสียงจำกัด เขียนเป็น ni ≤ n ฉัน = 1, 2 เนื่องจากข้อจำกัดจะผูก สายการบิน 1 ฟังก์ชันวัตถุประสงค์ถูกกำหนด โดย (8)มี n1 แทนที่ด้วย ภายใต้ตัวเลือกพร้อม ก่อนหน้าแรกสั่งเงื่อนไข (9) สำหรับ p1ยังคงเกี่ยว ข้อง แต่แทนที่ ด้วย f1n L โอ่อ่าสมมาตร การแก้ปัญหาค่าโดยสารอยู่แล้วp =τด้วยกอง ทัพ/2 + ราคา 800, (16)ซึ่งสอดคล้องกับการแก้ปัญหาที่ก่อนหน้านี้ใน (11) หลังจากทดแทนสำหรับ L. เทียบเท่านี้หมายถึงที่ ถ้า L ภายใต้ข้อจำกัดที่สะสมไว้เพื่อให้เสียงรบกวนต่อเครื่องบินใน (13)เท่ากับ n ออกค่าโดยสารระดับเดียวกันภายใต้ระบอบสองเป็นเงื่อนไขก่อนสั่งสำหรับ f1∂Π1∂f1=Γ (p1 −τ−ราคา 800)Αf21−Θ = 0, (17)และ แทน (16), มันทำให้การแก้ไขความถี่สมมาตรของf =Γ2Θ. (18)ภายใต้เลือกลำดับ การวิเคราะห์ตามขั้นตอนเดียวเป็นก่อน ค่าโดยสารโซลูชันใน (16) จะเกี่ยวข้อง แต่ความถี่ถูกกำหนดโดยf =Γ3Θ, (1913ที่ตัว 3 แทน 2 ในโซลูชันพร้อม case.17 สะสมในภายใต้ทั้งสองพร้อมกัน และวางโซลูชั่น เพิ่มความถี่ในγ และลดθ ในกรณีสะสม แต่ความถี่ขึ้นอยู่กับ n และเป็นอิสระของ stringency ของเสียงข้อจำกัด ตรงข้ามกรณีสะสม มีขึ้นอยู่กับขีดจำกัดของเสียง nf และเสียงดังรวม L f เพิ่มขึ้นเป็นยก n และ L เพิ่มขึ้นγและน้ำตกกับθ กด n คง นอกจากนี้ เนื่องจากไม่มีการแก้ปัญหาค่าโดยสารใน (16)เกี่ยวข้องกับ f, p เป็นอิสระของγและθ ถึงแม้ว่าค่าโดยสารบวกตอบด้วยกองทัพ และΤ เป็นก่อน ลักษณะพิเศษเหล่านี้เปรียบเทียบคงจะสรุปในตารางที่ 2 ผู้โดยสารสายการบินare hurt, as in the cumulative case, by a tighter noise constraint, but the effect now operatesthrough a single channel, a higher fare, with service quality unchanged.18As in the cumulative case, sequential choice yields a higher frequency and smaller aircraftsize than simultaneous choice. But since p is independent of f, fare levels are the same underthe two choice scenarios, in contrast to the previous conclusion.A more interesting observation, however, is that frequency is always higher under a peraircraftnoise constraint than in the cumulative case, with the opposite conclusion applying toaircraft size. These results follow because the simultaneous frequency solution in (18) is largerthan the corresponding cumulative solution (12), with the same comparison applying to thesequential solutions (19) and (15). Apparently, lower frequencies arise in the cumulative casebecause a reduction in f provides a means of satisfying the cumulative constraint.Summarizing the main conclusions of the above analysis yieldsProposition 2. (i) A reduction in the allowed noise level under a per-aircraft constraintraises the fare, harming airline passengers, while having no effect on flightfrequency or aircraft size. Total noise falls.(ii) Flight frequency is always higher and aircraft size lower under a per-aircraft noiseconstraint than under a cumulative constraint, but fares are identical in the two casesเมื่อมีตั้งข้อจำกัดเพื่อให้ได้เสียงเดียวต่อเครื่องบิน3.4.กรณีผูกขาดในกรณีผูกขาด วิเคราะห์ โดย Girvin (2006a), ผลการเปรียบเทียบคงแตกต่างกันที่เกิดขึ้น แม้ว่าโซลูชั่นแบบปิดสำหรับตัวแปรการตัดสินใจไม่มี เธอวิเคราะห์14แสดงว่า การขันจำกัดสะสมเสียงลดความถี่เที่ยวบิน ในข้อเสนอที่ 1 L ด้านล่างยังมีผลต่อคิว จราจรซึ่งสันนิษฐานไม่สมดุลคงค่าของ 1/2 ก่อให้เกิดการปล่อย F q ทั้งตก เปลี่ยนขนาดเครื่องบินเป็นคลุมเครือ และข้อสรุปเดียวกันใช้ความเงียบของเครื่องบินและค่าโดยสาร ภายใต้การ peraircraftข้อจำกัดของเสียง การลด n ออก f ตรงข้ามเสนอ 2 ในขณะที่ยังลดปริมาณการใช้ นอกจากนี้ อากาศยานขนาดน้ำตก บทสรุปเหล่านี้แสดงว่า duopoly และequilibria ผูกขาดมีคุณสมบัติแตกต่างกันมาก
การแปล กรุณารอสักครู่..
