2. VLBI for frequency transfer
Given the fact that VLBI stations are equipped with highly precise and short-term stable frequency standards, usually hydrogen masers, comparing these atomic clocks appears to be straightforward. Since the early days of VLBI, several studies have dealt with the topic of applying this technology for time and frequency transfer (e.g. [10]). Also in [11] the use of VLBI for time and frequency metrology is discussed and the potential of this technique is pointed out. However, it has been stated that VLBI systems have several drawbacks that compromise the application of VLBI for such purposes on a routine basis. First, current VLBI systems are not operating continuously. Observation sessions are usually scheduled to last for only 24 h, which prevents frequency comparisons on time scales longer than one day. Second, as most of the cable and electrical path lengths in the VLBI system are not calibrated in an absolute sense and are designed to be variable, this technology cannot directly be utilized for time comparisons. Frequency transfer is still possible on time scales shorter than the variation, estimated to result in a 1 ns variation over a period of a few days.
In order to understand how VLBI can be a potential frequency transfer technique over inter-continental distances one needs to recall the basic principle of this space geodetic technique. As illustrated in figure 1, VLBI telescopes observe signals from extra-galactic radio sources that are recorded and time-tagged by clocks referenced to the local oscillators, typically hydrogen masers. The difference between the arrival times measured with the respective clocks at the stations is determined by cross-correlation of the recorded data. In case of absolutely calibrated cable and instrumental path lengths, the clock difference follows when subtracting the theoretical delay [12]. Thus, VLBI is in principle able to directly determine the differences between clocks at two sites, if the Earth's orientation, the station positions, as well as ionospheric and tropospheric delays are known or simultaneously fitted. Regarding the station positions, it can be stated that station coordinates of geodetic VLBI sites can be modeled with mm-accuracy, which allows using this as a priori information when performing time and frequency transfer. The delay in the ionosphere can be removed by observing at two or more different frequencies. Tropospheric delays depend on the observation direction and state of the atmosphere. They can be handled by performing measurements at different elevation angles and estimating the corresponding zenith delays with the so-called mapping functions as the partial derivatives. Since mapping functions are elevation-dependent but clock differences are independent of the elevation angle, it is possible to separate both quantities in the estimation process. However, as mapping functions can only approximate true meteorological conditions to a certain extent, errors in the estimation of tropospheric parameters might propagate into both clock parameters and station heights when estimated.
2. VLBI สำหรับการโอนย้ายความถี่ให้ความจริงที่ว่า สถานี VLBI เพียบพร้อม ด้วยมาตรฐานความถี่ที่มีเสถียรภาพสูงแม่นยำ และระยะสั้น ปกติไฮโดรเจน masers เปรียบเทียบนาฬิกาอะตอมเหล่านี้แล้วจะตรงไปตรงมา ตั้งแต่ยุคแรกของ VLBI หลายการศึกษาได้ติดต่อกับหัวข้อการใช้เทคโนโลยีสำหรับการโอนย้ายเวลาและความถี่ (เช่น [10]) นอกจากนี้ยังกล่าวถึงใน [11] การใช้ VLBI สำหรับเวลาและความถี่ของมาตรวิทยา และศักยภาพของเทคนิคนี้คือชี้ให้เห็น อย่างไรก็ตาม มันมีการระบุว่า ระบบ VLBI มีข้อเสียหลายที่ประนีประนอมใช้ VLBI สำหรับวัตถุประสงค์ดังกล่าวเป็นประจำ ระบบ VLBI แรก ปัจจุบันจะปฏิบัติอย่างต่อเนื่อง เซสชันการสังเกตมักจะกำหนดการล่าสำหรับเฉพาะ 24 h ซึ่งทำให้ไม่สามารถเปรียบเทียบความถี่บนสเกลเวลานานกว่า 1 วัน ที่สอง เป็นทั้งสายและความยาวเส้นทางไฟฟ้าในระบบ VLBI ไม่ได้ปรับเทียบในความรู้สึกสมบูรณ์ และออกแบบให้มีตัวแปร เทคโนโลยีนี้ไม่สามารถโดยตรงจะใช้สำหรับเปรียบเทียบเวลา โอนย้ายความถี่ได้ยังบนสเกลเวลาที่สั้นกว่าความผันแปร ประเมินผลใน 1 ns แปรปรวนระยะเวลากี่วันIn order to understand how VLBI can be a potential frequency transfer technique over inter-continental distances one needs to recall the basic principle of this space geodetic technique. As illustrated in figure 1, VLBI telescopes observe signals from extra-galactic radio sources that are recorded and time-tagged by clocks referenced to the local oscillators, typically hydrogen masers. The difference between the arrival times measured with the respective clocks at the stations is determined by cross-correlation of the recorded data. In case of absolutely calibrated cable and instrumental path lengths, the clock difference follows when subtracting the theoretical delay [12]. Thus, VLBI is in principle able to directly determine the differences between clocks at two sites, if the Earth's orientation, the station positions, as well as ionospheric and tropospheric delays are known or simultaneously fitted. Regarding the station positions, it can be stated that station coordinates of geodetic VLBI sites can be modeled with mm-accuracy, which allows using this as a priori information when performing time and frequency transfer. The delay in the ionosphere can be removed by observing at two or more different frequencies. Tropospheric delays depend on the observation direction and state of the atmosphere. They can be handled by performing measurements at different elevation angles and estimating the corresponding zenith delays with the so-called mapping functions as the partial derivatives. Since mapping functions are elevation-dependent but clock differences are independent of the elevation angle, it is possible to separate both quantities in the estimation process. However, as mapping functions can only approximate true meteorological conditions to a certain extent, errors in the estimation of tropospheric parameters might propagate into both clock parameters and station heights when estimated.
การแปล กรุณารอสักครู่..