In the paper, we have found all solutions to the Diophantine equation 2x + 3y2 = 4z in non-negative integers. The
solutions are given by (x; y; z) 2 f(2(n ¡ 1); 0; n ¡ 1) : n 2 Ng [ f(2(n ¡ 1); 2n¡1; n) : n 2 Ng: Also, we have shown
that for d = (2k ¡1)=9 and natural number k ´ 0 (mod 6); the solutions to the Diophantine equation 2x +dy2 = 4z
in non-negative integers are (x; y; z) 2 f(2(n ¡ 1); 0; n ¡ 1) : n 2 Ng [ f(2(n ¡ 1); 3(2n¡1); n ¡ 1 + k=2 : n 2 Ng: