two functions—easyExchange, where the new smallestelement x < L[i], 0  การแปล - two functions—easyExchange, where the new smallestelement x < L[i], 0  ไทย วิธีการพูด

two functions—easyExchange, where t

two functions—easyExchange, where the new smallest
element x < L[i], 0  i < n replaces the largest element
L[m] and returns L[m]; hardExchange is identical
to easy exchange, but x can be any number. This paper
defines an extra function normalize that transform the
rotated list to a sorted array.
As described in (Frederickson 1983), easy exchange
can be done in O(1) operations once L[m] is found, as the
operation only needs to replace L[m] with the new smallest
element x. Array L still satisfies as a rotated list, but
the position m0 of the new largest element L[m0] is leftcircular-
shifted by one (m0 = m - 1, or m0 = n - 1 if
m = 0). Hard exchange is O(n) since it needs to shift
all the elements larger than x in the worst case. Figure 1
shows easy exchange and hard exchange examples on a
rotated list.
Normalization can be done in O(n) time, an obvious
way to achieve this is by having a temporary duplicate but
the exact bound can also be achieved in-place recursively
by using Algorithm 1, which has exactly optimal 2n words
read and 2n words write for the array L. The same algorithm
can also be done iteratively.
0/5000
จาก: -
เป็น: -
ผลลัพธ์ (ไทย) 1: [สำเนา]
คัดลอก!
ฟังก์ชันสอง — easyExchange ที่ใหม่น้อยที่สุดองค์ประกอบ x < L [i], 0 ฉัน < n แทนที่องค์ประกอบที่ใหญ่ที่สุดL [m] และคืน [m]; L hardExchange เป็นเหมือนกันแลกเปลี่ยนให้ง่าย แต่สามารถ x เป็นจำนวนใด ๆ กระดาษนี้กำหนดเพิ่มเติมฟังก์ชันปกติที่แปลงนี้รายการหมุนไปเรียงลำดับตามที่อธิบายไว้ใน (Frederickson 1983), แลกเปลี่ยนง่ายสามารถทำได้ในการดำเนินงานของ O(1) เมื่อพบ L [m] เป็นการการดำเนินงานจำเป็นต้องแทน L [m] กับใหม่น้อยที่สุดตรงองค์ประกอบไฟร์เรย์ L ยังคงเป็นรายการหมุน แต่มี m0 ตำแหน่งขององค์ประกอบที่ใหญ่ที่สุดใหม่ L [m0] leftcircular-เปลี่ยนหนึ่ง (m0 = m - 1 หรือ m0 = n - 1 ถ้าm = 0) แลกเปลี่ยนยากเป็น O(n) เนื่องจากต้องเลื่อนทุกองค์ประกอบมากกว่า x ในกรณีเลวร้ายที่สุด รูปที่ 1แสดงแลกเปลี่ยนง่ายและแลกเปลี่ยนยากตัวอย่างในการรายการหมุนฟื้นฟูสามารถทำได้ใน O(n) ชัดเจนวิธีการเพื่อให้บรรลุนี้คือการมีแต่ซ้ำแบบชั่วคราวขอบเขตที่แน่นอนยังสามารถทำได้ในสถาน recursivelyโดยใช้อัลกอริทึม 1 ซึ่งมีคำสูงสุด 2n ตรงเขียนคำอ่านและ 2n เรย์ L. อัลกอริทึมเดียวกันสามารถทำซ้ำ ๆ
การแปล กรุณารอสักครู่..
ผลลัพธ์ (ไทย) 2:[สำเนา]
คัดลอก!
สองฟังก์ชั่-easyExchange
ที่มีขนาดเล็กที่สุดใหม่องค์ประกอบx <L [ผม], 0? i <n แทนที่องค์ประกอบที่ใหญ่ที่สุด
L [ม] และผลตอบแทน L [ม]; hardExchange
เป็นเหมือนการแลกเปลี่ยนง่ายแต่ x สามารถเป็นตัวเลขใด ๆ กระดาษนี้จะกำหนดปกติฟังก์ชั่นพิเศษที่เปลี่ยนรายการหมุนเป็นแถวเรียง. ตามที่อธิบายไว้ใน (Frederickson 1983) การแลกเปลี่ยนได้ง่ายสามารถทำได้ในO (1) การดำเนินงานครั้งเดียว L [ม] พบในขณะที่การดำเนินงานเพียงต้องการที่จะแทนที่ L [ม] มีขนาดเล็กที่สุดใหม่องค์ประกอบx อาร์เรย์ L ยังคงตอบสนองเป็นรายการที่หมุน แต่m0 ตำแหน่งขององค์ประกอบใหม่ L ที่ใหญ่ที่สุด [m0] ถูก leftcircular- ขยับโดยหนึ่ง (m0 = เมตร - 1 หรือ m0 = n - 1 ถ้าm = 0) แลกเปลี่ยนที่ยากคือ O (n) เนื่องจากความต้องการที่จะเปลี่ยนองค์ประกอบทั้งหมดที่มีขนาดใหญ่กว่าx ในกรณีที่เลวร้ายที่สุด รูปที่ 1 แสดงให้เห็นถึงการแลกเปลี่ยนได้ง่ายและมีตัวอย่างการแลกเปลี่ยนอย่างหนักในรายการหมุน. ปกติที่สามารถทำได้ใน O (n) เวลาเห็นได้ชัดวิธีการเพื่อให้บรรลุนี้โดยมีซ้ำกันชั่วคราวแต่ขอบเขตที่แน่นอนนอกจากนี้ยังสามารถประสบความสำเร็จในสถานที่ซ้ำโดยโดยใช้อัลกอริทึมที่ 1 ซึ่งมีคำว่า 2n ที่ดีที่สุดในการอ่านและเขียนคำ2n สำหรับอาร์เรย์ลิตรขั้นตอนวิธีการเดียวกันยังสามารถทำซ้ำ

















การแปล กรุณารอสักครู่..
ผลลัพธ์ (ไทย) 3:[สำเนา]
คัดลอก!
สองฟังก์ชัน easyexchange ที่ใหม่ที่สุด
ธาตุ X < L [ I ] , 0  i < n แทนที่ใหญ่ที่สุดองค์ประกอบ
L [ M ] ) L [ M ] ; hardexchange เหมือนกัน
เปลี่ยนง่าย แต่ X สามารถจํานวนใด ๆ
บทความนี้จะกำหนดฟังก์ชันพิเศษปกติที่แปลง
หมุนรายการเพื่อจัดการอาร์เรย์ .
ตามที่อธิบายไว้ใน ( เฟรเดอริกสัน 1983 ) , แลกเปลี่ยนง่าย
ที่สามารถทำได้ใน O ( 1 ) การดำเนินงานเมื่อฉัน [ M ] พบ เช่น การต้องการเพียงแทนที่
L [ M ] กับใหม่น้อยที่สุด
องค์ประกอบ X เรย์ยังน่าพอใจเป็นหมุนรายการ แต่ m0
ตำแหน่งใหม่ขององค์ประกอบที่ใหญ่ที่สุด m0 L [ ] เป็น leftcircular -
เปลี่ยน โดยหนึ่ง ( m0 = M - 1 หรือ - 1 ถ้า m0 =
M = 0 ) แลกยากคือ O ( n ) เนื่องจากความต้องการที่จะเปลี่ยนแปลง
องค์ประกอบทั้งหมดที่มีขนาดใหญ่กว่า X ในกรณีเลวร้ายที่สุด รูปที่ 1
แสดงตราง่าย และยาตราตัวอย่างบน

ปกติหมุนรายการ สามารถทำได้ในเวลา O ( n ) เป็นวิธีที่ชัดเจนเพื่อให้บรรลุนี้โดย

มีซ้ำกันชั่วคราว แต่ผูกพันที่แน่นอนยังสามารถบรรลุในสถานที่ recursively
โดยใช้ขั้นตอนวิธีที่ 1 ซึ่งได้ถูกต้องเหมาะสม 2n
อ่านคำ 2 คำและเขียน array L .
ขั้นตอนวิธีเดียวกันยังสามารถทำซ้ำ .
การแปล กรุณารอสักครู่..
 
ภาษาอื่น ๆ
การสนับสนุนเครื่องมือแปลภาษา: กรีก, กันนาดา, กาลิเชียน, คลิงออน, คอร์สิกา, คาซัค, คาตาลัน, คินยารวันดา, คีร์กิซ, คุชราต, จอร์เจีย, จีน, จีนดั้งเดิม, ชวา, ชิเชวา, ซามัว, ซีบัวโน, ซุนดา, ซูลู, ญี่ปุ่น, ดัตช์, ตรวจหาภาษา, ตุรกี, ทมิฬ, ทาจิก, ทาทาร์, นอร์เวย์, บอสเนีย, บัลแกเรีย, บาสก์, ปัญจาป, ฝรั่งเศส, พาชตู, ฟริเชียน, ฟินแลนด์, ฟิลิปปินส์, ภาษาอินโดนีเซี, มองโกเลีย, มัลทีส, มาซีโดเนีย, มาราฐี, มาลากาซี, มาลายาลัม, มาเลย์, ม้ง, ยิดดิช, ยูเครน, รัสเซีย, ละติน, ลักเซมเบิร์ก, ลัตเวีย, ลาว, ลิทัวเนีย, สวาฮิลี, สวีเดน, สิงหล, สินธี, สเปน, สโลวัก, สโลวีเนีย, อังกฤษ, อัมฮาริก, อาร์เซอร์ไบจัน, อาร์เมเนีย, อาหรับ, อิกโบ, อิตาลี, อุยกูร์, อุสเบกิสถาน, อูรดู, ฮังการี, ฮัวซา, ฮาวาย, ฮินดี, ฮีบรู, เกลิกสกอต, เกาหลี, เขมร, เคิร์ด, เช็ก, เซอร์เบียน, เซโซโท, เดนมาร์ก, เตลูกู, เติร์กเมน, เนปาล, เบงกอล, เบลารุส, เปอร์เซีย, เมารี, เมียนมา (พม่า), เยอรมัน, เวลส์, เวียดนาม, เอสเปอแรนโต, เอสโทเนีย, เฮติครีโอล, แอฟริกา, แอลเบเนีย, โคซา, โครเอเชีย, โชนา, โซมาลี, โปรตุเกส, โปแลนด์, โยรูบา, โรมาเนีย, โอเดีย (โอริยา), ไทย, ไอซ์แลนด์, ไอร์แลนด์, การแปลภาษา.

Copyright ©2025 I Love Translation. All reserved.

E-mail: